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0.0 Executive Summary

T7his report documents the results of an in-house effort to determine the feasibility of using

neural network techniques in the development of automated Reliability/Maintainability/Testability

(R/M/f tools. While many automated R/M/f tools already exist, and while some may even use
artificial intelligence techniques, this effort specifically investigated the field of neural networks as
a potential source of automated reliability analysis techniques. Neural networks provide some very
interesting and powerful data analysis capabilities, and the technology has become a significant

research area in the past five years. However, neural network research and development has had

little impact in the field of reliability, with the two areas progressing independently of each other.
Most researchers have been interested in performing data analysis for specific applications in their

respective fields. The concerns of R/M/f have yet to be addressed using neural networks.

The results of this initial effort indicate that it would be very worthwhile to develop neural

network techniques with the goal of improving the overall effectiveness of reliability analysis.

Fundamental math-based similarities exist between neural networks and reliability in the areas of

probability, statistics and data analysis, indicating that a combination of neural networks and
reliability would not only be natural, but useful and powerful as well. This report will introduce
neural network technology, characterize significant features of neural networks, discuss problems
with existing automated Reliability/Maintainability (R&M) methods, recommend areas where

reliability can benefit from the application of neural networks, discuss basic research done on data
and related data analysis techniques, present a perspective on what the research means, and

describe the design of a neural network whose architecture is based on statistical features of data.

The main purpose of a neural network is to process data such that the network can learn-

information embedded in data, and once learned, to recall that information in a useful fashion. The

most significant results of this work have been a comprehensive understanding of the state-of-the-
art in neural networks, and also the realization that underlying components of data exist and can be

used to improve many kinds of data analysis techniques. This work has formed a foundation
which will aid in the development of more efficient automited R&M analysis tools.. While much
more research and development is needed, the resulting data analysis techniques will no doubt. be
useful for very many R&M applications. Many of the advantages of neural networks are especially
applicable to reliability theory due to similar mathematical foundations.



1.0 Introduction

The purpose of this effort was to determine the feasibility of using neural network
techniques in the development of automated R/M/T tools. The approach taken was to examine the
potential benefits of neural n.-twork technology at a high level, to focus on underlying principles of
neural networks and reliability theory, and then to evaluate the applicability of neural network
principles to the R&M problem domain.. This investigation led to basic concerns involving the
nature of data, and related data analysis issues needed to be addressed before attempting to

automate the kinds of issues which surfaced. The reasons for undertaking this task in the first
place were apparent similarities in the underlying mathematical nature of neural networks and
reliability. Both fields involve data ana!ysis which uses similar mathematical operations and
concepts. The math modeling used in both fields are based on probability theory and statistical
mechanics, making use of data descriptions and distributions, random processes and uncertainty
principles. Besides mathematics, related concepts also exist in physics, engineering, and artificial
intelligence. Neural network research itself includes work from the technical disciplines of
electrical engineering, computer science, mathematics, biology, neurology, physiology,
psychology, physics and others. Neural networks, probably more than any other technical
discipline, have actually encouraged and benefitted from many disciplines working together.
Reliability has much to gain by being included in this work.

This report discusses neural network features and their characteristics which have
application to the broEad area of reliability analysis. The goal has been to determine if neural
network techniques can be used to perform some of the functions required by a reliability engineer
which are currently performed using other (e.g. manual) methods. The initial approach
emphasizes neural network techniques implemented in software. This effort does not address
neural network hardware or the reliability of such hardware, nor does it address the reliability of
software used to perform neural network techniques. The overall goal of this work is to develop
useful automated R&M tools and capabilities which currently do not exist.

Section 2 of this report provides a little background on neural networks, indicating how the
technology got started. An overview or synopsis of the technology itself is given in section 3.
Areas of mutual concern between reliability and neural networks are addressed in section 4.
Section 5 describes research done in this effort concerning data and related data analysis issues. A
few more words should be said about this researc!i. While not envisioned initially, research issues
surfaced which addressed basic needs lacking in the area of automated intelligent information
processing. Underlying components of data appear to exist and be exploited in the brains of



animals naturally. With one of the goals of neural networks being to automate functions similar to

those of (animal) brains quickly and efficiently, we have tried to characterize some of the

underlying components of data. Our emphasis was on frequency aspects of data. Attempts

initiated here have had interesting results and implications. The impact that this work may have on

automating information processing systems is of course unknown, but the potential is enormous.

More research and development is needed to explore possible directions and applications. The

work is described in an introductory nature in sections 5 and 6 of this report.

Another part of this work has been the development of a neural rnetwork which relies on the.

statistical nature of data to build its architecture. The Statistical Neural Network, as it is called,

uses data descriptors to help design the layers, nodes, and connections of the network's

architecture. The Statistical Neural Network is described in section 7, with an example provided to

help explain the operation of the network. Section 7 addresses one of the fundamental links

between neural networks and reliability, namely statistics.

1. 1 Role Of Automated Tools & Techniques in R&M

In the past, recliability engineers have spec~ialized in developing and applying reliability and

maintainability principles in order to satisfy the reliability requirements for the products they've

worked on. Over the years, many kinds of reliability methods and techniques have been used.

These tasks have relied heavily on sound mathematical principles, good data, and a manual process

to make sense of it all. But as computers have become more and more widespread, they have

come to be used by reliability engineers to do the number crunching and other types of data

processing tasks which are so much a part of their work. This has caused a shift away flomi the

manual, task-oriented nature of the work to a mcre automated, process-driven way of doing things

[18]. To be sure, the same kinds of reliability tasks will still have to be performed, as the

requirements for them have never been more necessary. Today's Air Force avionics have very

high reliability requirements. Over time, avionic systems have become much more complex. The

combination of many complex components and the difficulty of analyzing how they interact with

each other have led more to automated analysis. While the need for reliability work will not go

away, the nature of that work is slowly changing. Reliability engineers are taking advantage of

computer hardware and software, among other things, to ease the burden of the math and data

intensive analyses required of them. Thus the overall impact of automated data processing isJ

having a positive effect in the R&M community with the aim of performing the necessary tasks in a

quicker, easier, more accurate fashion.

3



1.2 Role Of Technology Development in R&M

Computer technology Ihas comre to play a major role in the engineering community. With
the goal of making the job of the reliability engineer more practical, efficient and accurite, we
pursue the development of automated technologies. There can be no doubt that comaputers have

proven beneficial to the field of reliability. Technology development for automated tools is needed
in order for reliability science to maintain state of the art. Automated technologies such as
Computer-Aided Design, Computer-Aided Manufacturing, and Finite Element Analysis have
provided capabilities that would be impossible to perform manually. Research and development

(R&D) is necessary to enable the development of advanced tools and technologies. Rome

Laboratory has been involved in R&D for many kinds of automated R&M tools 191.

Most of the computer hardw~re used for R&M is commercially available. Very few, if
any, features or capabilities of conventional computers are specific to th~e tield of R&M. Much of
the computer-related research involves the generic capabilities of computers, such as ut:sing
commercial state-of-the-art hardware or software, integrating existing techniques in a novel way,
or developing better procedures or algorithms which run on general purpose machineýs. However,

certain aspects of neural networks appear to have specific significance to R&M. The mathematical
similarities of neural networks and R&M, right down to their fundamentals, imply that with proper
development, neural networks can provide enormous benefits to the field of reliability.ý By
examining where neural networks have come from, seeing where the technology is today, and
envisioning future capabilities, this report will characterize neural networks as applicable to the
fiteld of reliability.

4
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2.0 Neural Networks Background

Neural networks are a subfield of artificial intelligence (Al). The other subfield of Al can
be called traditional Al. Both discinlines involve automating functions wl~ich, if performed by a

human, would require intelligence. Thus all of artificial intelligence tries to mimic certain aspects
of human intelligence using computational methods. Traditional Al believes that intelligence can be
programmed expl~citly using symbolic languages and formal logic. It is a top-down approach
which places much emphasis on computer science and programming. Neural networks have more

of a neurobiological origin, with emphasis on trying to model living neural functions. The two

main interests of neural network research are in developing realistic biological models and in

developing machines (computers) which perform intelligent functions. The latter is our concern,

with the belief that a network of relatively simple processing elements connected in some complex

yet orderly fashion can be used to represent and perform intelligent-like functions. Neural
networks represent a bottom-up approach to computation, making use of simple processing
elements connected in a complex parallel fashion. The approaches of traditional Al and neural
networks are quite different. Yet both disciplines work toward overlapping, if not similar, goals.
The task of automating intelligent functions is-enormously complex. The factors involved are
many, and the functions being automated are not very well understood. Toward this extraordinary
goal, researchers have only scratched the surface.

Artificial intelligence began as a formal discipline in the summer of 1956 with the
Dartmouth Summer Research Project on Artificial Intelligence 1201. Also at this conference, the

field of neural computing was launched [17]J. Today researchers interested in neural networks may
have a background in mathematics, biology, psychology, neurology, cybernetics, control theory,
engineering, information theory, physics, cognitive science, computer science or various other
related disciplines.

2.1 Interest in Artificial Iiitelligence

Although traditional Al and neural networks have been in existence for over thirty-five

years, the amount of work done under the two disciplines has varied considerably. Traditional Al
has enjoyed steady interest over the years, yet its approach and especially its progress have been
controversial. One of the more successful areas of traditional Al are expert systems. These
systems have been accepted in many applications where expert knowledge can be well defined and
explicitly encoded as sets of decision rules. As automated technologies have evolved, expert
systems have matured to the point where it is questioned whether they still belong under Al. In



any case, expert systems are still of interest to traditional Al researchers, along with areas such as

knowledge-based systems, automated planning, programming and reasoning, natural language

processing, validation and verification of softwar:-, and intelligent computer interfaces.

Neural networks have not enjoyed steady interest since their beginning. Lack of

knowledge of neural-like functions, insufficient math models, and the state of hardware and

software Lechnology severely limited progress. Limitations of early neural models, and particulrly

of Frank Rosenblatt's perceptron, were documented in 1969 by Minsky and Papert in their

influential but controversial book [211. Minsky and Papert's book, while mathematically

thorough, drew some harsh conclusions about perceptrons Among other things, they implied that

neural networks more complex than those analyzed in their book were of little scientific interest.

Largely as a result of this well-written but misleading book, interest in neural network research,

and the money which funded it, dropped [26].

2.2 Renewed Interest in Neural Networks

For the next fifteen years or so, relatively few researchers worked in the area of neural

networks. But by the mid- 1980's, several developments had combined to renew interest in neural

networks. Better understanding of some of the brain's functions led to better neural network

models. Newer models used more appropriate math functions and techniques such as nonlinear

transfer functions. Multilayer architectures overcame the limitations of single-layer perceptrons.

Better forms of knowledge representation were being developed, and advanced computer hardware

and software technologies were providing the computer power needed to perform complex neural

network simulations to a wide variety of researchers. The results of research drew more and more

interest, and soon neural network technology grew so big so fast that today there is a flood of

interest and material on the subject. Current indications are very promising that as neural network

technology develops, the resulting data analysis capabilities will be useful for very many

applications. However, while the promise stands, much more work is needed before neural

networks can enjoy widespread acceptance.
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3.0 Neural Networks Overview

A neural network is a math-based, neurologically inspired model used to perform certain

kinds of data analysis. The architecture of a neural network, as well as methods of operation, will

be described next. This will be followed by a discussion of the features which make neural

networks so interesting. These features are directly related to network architecture and operation.

3.1 Architecture and Operation

The architecture of a neural network generally consists of layers of processing elements.

The processing element is the basic building block of the network. A typical processing element is

shown in figure 3-1. Mathematical functions are used to represent a transfer function which maps

the element's parallel input signals to an output signal. Many signals come in, get combined, and

then pass through a threshold function which determines the output ,'alue. The output is connected

to the input of many other processing elements, creating a layered network. Each connection in the

network is represented using a mathematical quantity which allo.vsa weight to be associatc . with

that conne. .ian. These weights are used to represent information, and are a most essential concept

in the network learning process. The weights are modifiable, allowing network connections to be

strengthened, weakened, left unchanged or even eliminated during operation. The network

connection scheme and the number of layers, processing elements and inputs per processing

element combine to create many possible kinds of architectures.

a, Wl1

Figure 3-1. Typical processing element. The processing element multiplies each input signal by
its appropriate connection weight. Signals get combined and passed through a threshold function,
producing one output signal.

7
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The operation of a neural network consists largely of methods to control learning and recall
within the network. Learning involves assigning or modifying the connection weights, which is
basically inputtfng and encoding information in the network. Recall is the process of acccssing or

outputting information, and provides the network's response for a given input. Operation also
involves such issues as network initialization, state values, timing, input and output requirements,

and methods to monitor and control the functions of the network. More details of neural network
opetation will be given in the following sections.

3.2 Significant Neural Network Features

- The most sigaificant features of neural networks come under the hearding of information
processing, and more specifically, data analysis. Neural network analysis features will be
discussed, with emphasis on how they may complement existing methods. While the following
neural network features do exist, researchers are working toward making them more practical.
These features have become evident by examining the literature and compiling and correlating the
results of many independent researchers. The most significant characteristics of neural networks
are that they:

- learn
- generalize
* use a parallel, hierarchical architecture

Each of these will be discussed in more detail.

3.2.1 Automated Learning

Learning is defined here as lasting change toward improved performance resulting from
experience. The lasting change is handled by the network's connection weights. Improved
performance involves goal-directed response which is controlled by a learning procedure or
algorithm. Experience is data. These definitions can eas~ly lead to others, such as for information,
knowledge, intelligence and understanding. Suff ce it to say that learning involves change in
something, and that change ought to have a purpose. The ability to learn is by far the most
significant aspect of neural networks. This concept is not only powerful, but it is an essential part
of information processing. While conventional computers do many things, having established a
firm place in our society, if they learn at all (as in some forms of conventional AI), they do so very
awkwardly.

8



Neural networks learn, or are trained, as data passes through the network. The connection
weights get modified according to the designed-in learning procedures. Changing data causes the

network to change its weights. Programming is implicit, being a function of the data and the
network's architecture. This contrasts with the programming method of conventional computers,

which is much more explicit. While explicit programming has its advantages, the real world is not

explicitly understood, and consequently very many situations exist which need better solutions.
The possibility of neural networks filling this need is very good, since it includes the concept of
learning. Neural network learning is often classified as being supervised or unsupervised, each of
which will be described next.K

3.2.1.1 Supervised Learning

Supervised learning, as the name implies, involves presenting the network with some kind

of supervision during learning. Usually this is accomplished by providing the desired response to
the netw.ork as part of its training data. Weights would then be changed based on the difference

:wtween the network's actual and desired responses. The goal of training here is to have this
difference converge to a minimum value. Convergence is a very important concern, with the goal
of having the network converge to a global rather than a local minimum. This form of learning
tends to take a long time and be performed off-line, since satisfying convergence criteria can7
involve many iterations. However, when properly applied, solutions also tend to be quite good,
given that known solutions are used as part of the learning process. Many kinds of supervised
learning methods exist, and different versions of each kind may have different names. For

example, the difference method described above may go by the name error correction, delta rule,
least mean square error rule, etc..

3.2.1.2 Unsupervised Learning

Unsupervised learning involves having the network determine weight adjustment itstlf,
without any supervision. The network does this mathematically by organizing it's weights as a
function of how new input data is relpted to or associated with previously input data. Connection
weights may be initially set to random values, and as the network learns, or trains, it will
accumulate or distribute its weights accordingly. Similar training patterns will reinforce existing
weights, and new patterns will form new connectison patterns. Complex relationships can be
constructed this way. Hebbian learning, first introduced as a technique for learning in biological
neurons [ 15], has been used as a basis for this kind of learning. Hebbian learning basically states
that if an input and the output of a processing element are large, then the weight adjustment for that
particular input should be large. Thus the input and the output are correlated such that the

9



corresponding input weight is strengthened (or weakened) accordingly. The processing element
becomes more sensitive to similar patterns at that input. This has become an important learning

law in neural networks. Variations of Hebbian learning may even be modified to produce

supervised forms of learning. In fact, all forms of learning use some kind of criteria to adjust
weights, and it becomes a matter of def inition as to what supervision actually is.

Networks based on unsupervised learning are ofl~cn used for classification or as associative
memoiies, since new data can be associated with data already present in the network. Many
variations of associative neural networks exist [261. In fact, all neural networks have some
associative nature to them. Dr. James Anderson of Brown University has stated that association is
one of the founadations of human cognition 14]. The ability of the networks trn learn data
associations and to represent complex data relationships is one of their most significant features.

Since unsupervised networks organize or modify their weights based solely on input patterns,
learning tends to be quicker, and perhaps less accurate, than in supervised jearning. Unsupervised
learning techniques are used for on-line or real-time applications where weight adjustment is

designed for convergence with relatively few iterations.

Another kind of learning is called graded learning. Here the network uses feedback of
some sort to determine how it is doing (good or bad), but it is not given the desired response,
usually because it is not available. This puts graded learning somewhere between supervised and
unsupervised. Learning methods can also be combined in a network to form more complex
learning algorithms. Different layers of a network can use different learning methods. A technique
called competition can also be designed into a neural network. This allows processing elements to
compete for the privilege of learning. The winner of the competition adjusts its weights and output
accordingly, and the losers are prohibited from learning. Technical challenges concerning neural
network learning will be discussed later in this section.

3.2.2 Generalization

Another significant feature of neural networks is their ability to generalize. This means that
the network can produce a general response to an input or set of inputs it has never seen before.
This feature has to do with the network's ability to make associations and approximations between
its many stored patterns. If input data is noisy, if part of its content is missing, or if it just hasr't
been learned yet, the network will generalize with its "best gue ss". New or novel data is handled
by having the network respond with an output which is most closely associated with patterns
already stored. This requires neural networks to be able to deal with fuzzy concepts. Fuzzy logic

10



and fuzzy sets, along with other areas of mathematics which allow approximations and averages to
be made, help enable the generalization capability.

The ability to generalize is handled quite naturally in neural networks, while it is not
handled so well in conventional computers. This is because conventional computers are based on
boolean logic, with everything being either "1" or "0", black or white. They are designed to be
very precise and logical. The accuracy of conventional computers conflicts with the very concept
of generalization. Neural networks, in theory, are designed to handle data as it comes in from the
real world. Their quantities may be discrete or continuous. The quality of data may be noisy,
fuzzy, or incomplete. A goal for neural networks is to be able to handle real world data in a form
most closely to that which it naturally occurs. This requires the ability io generalize.

Part of the reason neural networks can generalize stems from their parallel architecture. By
having many parallel inputs, each processing element can integrate many signals at once.
Techniques such as averaging, thresholding, normalizing and interpolating aid in the generalization
process. Data variations can be used to create ranges, and frequency of occurrence can be used to
compile statistics. Data entering the network gets distributed and represented as patterns of
connectivity. These patterns come to represent general forms of data, having many links and
weights associated with them. This kind of operation is much different from the serial operation
typical of conventional computers. The generalization capability of neural networks is by
definition a general feature, leading to more specific capabilities such as association, classification,
estimation, optimization, and recognition. The downside to the generalizaition feature can be
misleading or incorrect results.

3.2.3 Parallelism

The third significant feature of neural networks, already mentioned above, is their parallel
architecture. While parallelism tends to be a very complex feature to design into a system, it will
undoubtedly be an essential part of the most advanced systems. The parallel architecture of neural
networks makes it possible to represent and process complex relationships quickly and efficiently,
adding functionality not present in serial coiniputers. While each processing element may be
mathematically simple, the parallel configuration of these simple processing elements can allow
complex, powerful behavior to be achieved at a higher level. The hierarchical structure of the
network enables a global view of data at the highest level, with complex data patterns broken down
via simple processing elements connected in a parallel fashion. The parallel architecture of neural
networks should not be underestimated. The parallel architecture comprises the "hardware" of



neural networks. The inspiration from living neural systems may eventually provide the insight to
enable researchers to overcome the complexities facing parallel computer design.

Another aspect of parallelism is fault tolerance. By distributing data, processing, and
interconnect across its entire architecture, no one area of the network is critical for operation.
While this is typically true at the middle layers of a neural network, the input and output layers tend

to be less fault tolerant. It appears that fault tolerance is directly related to the degree of parallelism

involved. Also associated with parallelism in neural networks is the characteristic of graceful

degradation. This means that as failures tend to occur in a network, its operation degrades less
abruptly or drastically than for serial approaches. Graceful degradation implies that a faulty
network can provide an output that is less than optimum but still useful.

The various features of neural networks combine to form very interesting systems. The

ability to learn, the ability to generalize and process real world data effectively, and the
functionality of a parallel structure consisting of simple processing elements connected in a
hierarchical fashion form the basis of neural networks. Neural networks are fundamentally very

different from conventional computers. However, the two types of computers are not in
competition with each other. In fact, they tnay very well complement each other in future systems.

3.3 Technical Challenges in Neural Networks

Neural networks are not a mature technology. Many technical challenges remain, some of
which can explain why the technology has not achieved widespread acceptance. The biggest
challenge by far is neural network design. Very many different designs exist, but each has its
shortcomings. No single, general purpose design exists which is powerful and efficient enough at
solving a wide variety of problems. A!so, given the large number of people working this relatively
new problem, lack of consensus exists over what the various neural network terms, concepts and
techniques actually mean. This adds to the confusion in this already complex technology.

Consequently, neural networks may be incorrectly applied where they might have been useful, or
they may be used in areas where they do not apply. Researchers are currently trying to standardize
various aspects of neural network technology.

The main challenges of neural network technology stem from the difficulty of obtaining
useful and efficient network designs. Designs principally involve network architecture and
operation, with learning algorithms at the heart (or actually, the brain). Due to the complexities of
building in powerful functions, necessary control, and useful features, the state-of-the-art is
relatively immature at this time. However, it is believed that concepts stemming from those being
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researched today, especially in the areas of learning and control, will one day be used to perform
functions similar to those of living neural systems.

The underlying concept of man-made neural networks is that they readily exploit the
mathematical properties inherent in data. 'The networks represent and manipulate information
embedded in data. To be able to do this, we assume that data inherently contains properties which
can adequately be described in mathematical terms. Considering the nature of data, from the
physics of its source to the statistics of its content, it appears that this is a good assumption. It
would then follow that the mathematical properties inherent in data can readily be exploited. These
issues are discussed in more detail in sections 5 through 7 of this report.

Another challenge in neural network design has to do with the availability of good data.
Data is needed to train the network, and usually different data is needed to test or run the network.
The learning which takes place during training hinges upon the form in which data is represented in
the network. Representation may involve binary data (only 0 and 1, which is used in digital
computers), analog data (which is the form of most naturally occurring data), or fuzzy data (many
values between 0 and 1). An area which has not been developed well e,,vugh is the one
concerning the mathematical nature of data. It is believed that basic concepts stemming from the
laws of physics and described in the language of mathematics can be used to better characterize
data. Preliminary research indicates that data representation and processing may be done using
techniques based on the frequency components of naturally occurring data. By breaking data into
its fundamental components (frequency, phase and amplitude), more efficient techniques may be
developed to process and analyze real-time data.

The development of appropriate learning methods and algorithms are by far the most
i ntriguing and elusive aspect of neural network research. Unfortunately, no universally useful or
efficient automatic learning method exists. Given the overall complexity of the task, it appears that
the field of neural networks will progress slowly. Current neural networks may have processing
elements which number in the 1000's or 10,000's. The average human brain has over
10,000,000,000 neurons [27]. Each living neairon is much more complex than its electronic
counterpart. Also, as the number of processing elements increases, the complexities of connecting
them iogether in a meaningful way becomes enormous. The physical problems encountered when
implementing these interconnects in hardware approach the impossible, given today's technology.
If it were not for living proof that these kinds of systems exist, interest in building maii-made
neural networks might have faded by now. It is the exctraordinary undertaking of trying to emulate
the brain that provides motivation in building intelligent machines. The resulting data analysis
techniques will no doubt be useful for very many applications.
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4.0 Neural Networks and Reliability Theory

While conventional computers have been used in the development of analytical R&M tools,

neural networks have not yet been applied to the R&M problem domain. In fact., very little work

has been done investigating the potential benefits neural networks may offer to the field of*
reliability. Neural networks will of course have unique reliability concerns, as all technologies do.

The reliability of neural network hardware will have to be addressed., Also, fault tolerance is a
f-ature of neural networks often mentioned, but relatively little work has been done to characterize

or maximize the fault tolerance of the networks [81. This effort, however, is not concerned with
the reliability of neural network hardware or software. It is concerned with the specific task of

using neural network technology in the development of better analytical tools for reliability

assessment. Many kinds of analysis tools, methods and techniques exist, but the unique features

of neural networks may offer additional capabilities which can improve reliability modeling,

prediction, mcasurement and analysis. The techniques discussed here are most often implemented
in software and run on existing conventional computers. Various issues concerning neural

networks and reliability will be discussed in this section.

The data analysis performed by neural networks is very statistical in nature. The statistics

of data get compiled, associated and represented inherently by the network. Research in the U.S.
stresses this aspect of neural networks. Tom Schwartz calls neural networks. a statistically based

mapping technology [25]. Rumelhart, McClelland, and the PDP Research Group describe neural

networks as simple, parallel processing elements which perform complex statistical processes [24].
European researchers, on the other hand, stress probability theory and arithmetical logic more in
their implementation of neural networks [1l]. In general, all neural networks compile statistics and
form data distributions based on training data. The literature is full of examples of neural networks
which represent and process many kinds of data and perform a wide variety of analysis functions.

* What has not been emphasized well enough is that underlying neural network technology are
statistical and probabilistic techniques which form the basis of their operation. Many other areas of
mathematics are also used in neural networks. Since the networks are math-based, virtually any
area of mathematics could be incorporated into a neural network. In any event, statistics and
probability provide the foundation for the data representations and relationships which neural
networks ultimately model. Reliability theory is also based heavily on probability and statistics.
Thus this effort addresses the overlap between neural networks and reliability theory.
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4.1 Problems With Current Automated R&M Methods

Many current R&M methods include a fair amnount of automation to perform their math-
intensive analyses. The majority of these automated methods are run on conventional computers,
and are often quite usefui. However, conventional techniques are limited by the restrictions of the
machines they run on. These restrictions include:

* programming methods do not adjust to variations in data

- digital precision does not easily allow generalization
* serial operation limits complexity of data processing abiliti-.s

Other limitations of current automated methods are due to the uncertain nature of data in the field of

reliability:

* difficulties in assigning probabilities for reliability models

- excessive or incorrect use of assumptions

Also, the state of the art in computer science and artificial intelligence has difficulty extracting
information from data. Too little insight is provided into what data actually represents. This is
where the manual process of data int'orpretation and analysis has been used. An additional-
restriction to current R&M methods in general is the emphasis on testing and after-the-fact
assessment of parameters important to quality rather than on identifying and eliminating the root

causes of defects early-on.

While all these problems may not necessarily be solveo by neural network technology,
especially given its state-of-the-art, neural networks can indeed address them and perhaps lessen
some of the current restrictionis. Neural networks can be thought of as a tool for modeling
different kinds of data analysis problems. How this tool develops, and ultimately how it gets
used, remain to be seen. It appears obvious that no one computer method will solve all problems,
and that combinations and interaction of each useful method is a viable approach. This effort
stresses tha t neural networks are at least a part of this approach. Techniques which use
conventional philosophies and styles of programming can and should be combined with neural
network techniques in future research and development.
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4.2 Neural Network Applications to R&M

This section discusses how neural networks can be applied to the field of reliability by
listing each of the problems mentioned in section 4.1 and addressing it with the appropriate neural
network feature(s).

Programming methods do not adjust to variations in data. Current statistical methods do
not adapt well to changing data. The methods may not be flexible enough, or they may require
manual interaction, to handle dynamic or unexpected data values. Neural networks rely on
changing data to adjust weights according to the inherent statistical relationships of input data.
This area of application stems from the fact that neural networks are not programmed explicitly, but

7 learn data associations which are implicit in the input data patterns.

IDigital precision does not easily allow generalization. Digital computers are great at
performing precise calculations and formal logic. However, they do not handle noisy data very
well. Missing data often causes havoc. In general, conventional computers are rigid, precise
machines which must be programmed exactly. This is required for a great number of applications,
includi ng many in reliability. But debatably, this aspect of conventional computers greatly limits
their use. While the general, less formal, uncertain methods of computation and data processing

- - -used in neural networks are not well developed, they offer alternative solutions and possibilities of
addressing many applications not yet explored.

Serial operation limits complexity of data processing abilities. Conventional computers
operate serially at extremely high clock rates. This works well for very many applications,
includi ng neural network implementations which are run on conventional computers. However,
neural networks distribute processing over many elements instead of through one central
processing unit. A hierarchical structure of relatively simple processing elements connected in a
layered, parallel fashion offei. functionality not present in conventional computers. An additio3nal

aspect of parallelism not yet fully realized in neural networks is that they allow parallel inputs to be
combined simultaneously at each processing element. This creates multiple levels of parallelism
within a network, which brings potentially much computer power.

Difficulties in assigning probabilities for reliability models. In general the level of accuracy
or confidence associated with reliability depends on the values of basic parameters used in its
determination. Reliability theory accounts for probabilities and confidence limits, but does not say
how to assign these values in the first place. Neural networks can provide data analysis techniques

/ which characterize and process basic parameters which reliability models require. A natural way to
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handle probabilities using neural networks would be to let each connection weight, as it forms,
represent a probability. Network learning, which consists of adjusting w'ýights, could be made to
automatically reflect probability distributions of input data.

Excessive or incorrect use of assumptions. Assumption3 are often useful in estimation and
prediction, hut bad assumptions lead to incorrect or misleading results'. While huimans can rely on
experience to make skilled -assumptions, conventional computer methods typically try to encode
massive amounts of explicit data, or program nile-based systems which lead to solutions for very
limited domains. Given the same available data, neural networks tend to make better
generalizations and approximations. The weighting schemes used in neural networks handle data
by scaling the relative importance of data, based on the network's learning algorithm.
Assumptions will still have to be drawn, but the network would be extracting or utilizing more of

the information embedded in the data, making the human operator's job easier.

Difficulty extracting information from data. Too little insight is provided by conventional
methods into what data actually represents. Inferential statistics, together with neural networks,
can provide insight into data patterns and their embedded information. These techniques may not
suffice by themselves, but they can certainly aid in the manual analysis process, and in some cases
even improve on it. This stems from the fact that neural networks try to make use of all available
data, not just prepared data. Neural networks are often used for feature extraction or as filters
which preprocess data for more conventional computer techniques.7

General emphasis on testing and after-the-fact assessment. The philosophy in reliability
has traditionally been one to determine or predict how reliable a product is or will be by
emphasizing effects more than root causes. This often involves characterizing or testing for
problems or failure mechanisms which already exist. The emphasis has been on failures more than
on the underlying defects which cause them. A different philosophy is that which is common to
such methods as Design Of Expertiments, Building-In Reliability and Statistical Process Control.
These methods address reliability very early in the life cycle, and try to understand and eliminate
the causes of problems, thus preventing them from occurring at all. Neural networks can be used
in the data collection and analysis needed to accomplish this. By defining a process, controlling it
and improving on it, the statistical methods built into neural networks can be used to model the
process and to minimize variance, helping to efficiently produce quality products by design.
Neural networks lend themselves to the dynamics of change needed for continuous improvement.

Certainly all the, neural network features mentioned above are not specific to reliability
applications, but they are directly related. Neural network techniques will be subject to technology
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limitations, but hopefully some of these limitations will be overcome as the technology matures. In
any case, by combining the advantages of neural network technology to those of conventional
computer technology, many of the individual technology limits can be overcome. No doubt many
R&M application areas exist today which could use the combined strengths of neural networks and

conventional computers.

* 4.3 Mutual Areas of Interest -Mathematical Analysis

Most, if not all, of the mathematical methods used in neural networks today have existed

for some time. Applicable areas of math include algebra, geometry, calculus, differential

equations, communication theory, control theory, information theory, automata theory, arithmetical
logic, formal logic, fuzzy logic, statistics, probability, randomness, uncertainty, and chaos theory.

What neural networks contribute is a mechanism which allows many mathematical and other
concepts to be combined into one model in a useful fashion. The functionality is such that it brings

* the power of mathematics, the versatility of data analysis, the architecture of neural systems, the
concept of control theory and the ability to learn, among other things, together in one mocdel.

The main areas of interest mutual to reliability and neural networks are probability and
statistics. Distributions and data descriptions form an interesting and powerful starting point in the
data analysis domain. Probability and statistics may be used to describe data relationships and to

/ ¾ help characterize the quantitative and qualitative nature of data. Reliability has been defined as the
probability that a system will performi its intended function under specified conditions for a certain
length of time or for a certain number of cycles 1321. This effort has indicated that the fundamental

concepts of reliability and neural networks can be developed in such a way as to use the
functionality of neural networks to perform the analysis and information processing needed to
determine reliability.

V Probabilities are associated with variables when their values are not explicitly known, either

because they could not be measured accurately or calculated precisely enough. Reliability
problems are ultimately caused by failures. Failures do not occur randomly, but are caused by
defects. Defects are characterized using random processes, along with the many other tools of
reliability. R.-liability not only involves methods to characterize failures but also those to determine

-/ the conditions in which a system should not fail. With uncertainty and indeterminism involved,
probabilities, random numbers and statistical methods must be used in the characterization process.
Neural networks, more naturally than conventional computers, can be used to represent these kinds
of data characteristics. The weight vectors which comprise neural network connections can be
used to model probability distributions of features found in input data. Resulting distributions can
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be used to represent and help determine many parameters such as reliability, mission time, and

mean life. Neural networks can adapt their weights according to statistical associations of input

data. Techniques which involve averaging, approximations, assumptions and confidence intervals

can be used to describe and evaluate data, aiding in the analysis and decision making process.
Statistical tools could be used to characterize, control, and improve a process, thereby reducing its*

variability. Neural networks can be used to extract information from data, allowing inferential

statistics to be automated in a more efficient fashion.

Reliability is not an exact science. Its data and related analyses are subject to much

interpretation. Neural network features seem to lend the technology to much of the mathematical

analysis needed for reliability. Neural networks work with indetermini ,sm, can be used to make

estimates or best approximations, and can adjust weighted parameters due to changing data.

Potentially many neural network applications exist today in the field of reliability, but the

technology will take time to mature. Neural network designs which satisfy fundamental concepts

in math, physics, and other basic sciences will be very useful and can be developed to apply

directly to the field of reliability.

4.4 Application Considerations

A general understanding of neural networks is necessary when considering the technology

for possible applicaticns. Depending on the sophistication of the application, one can use "ready

made" neural network hardware or software solutions, develop an application using a neural

network development system, or create a network from scratch. The complexity of the task

increases quickly in the order given above. Many considerations enter into the picture no matter

what the level of complexity or application. A difficult aspect to deal with is the changing nature of

the technology. Not only is it relatively immatuwe, the technology involves adaptive techniques
which tend to be difficult to design or control. This makes it especially difficult to commit an

application to a hardware solution. While neural networks are finding their way into more and
more commercial applications, widespread acceptance and usage hinges upon the development of
more practical neural network designs.

One big consideration in applications is the process actually being modeled by the neural
network. The functionality of a neural network can be described at the highest level as shown in

figure 4- 1.
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INPUT PROCESS OUTPUT

Figure 4-1. Generic neural network model. The network models a process by representing the
output as a function of the input(s).

The process can be one of many things, such as a mathematical function or equation, or it can be
virtually anything that comes under the general definition of the word "process". The process gets
embodied in the neural network architecture, and the operation of the network is such that it models

or represents the output of the process as some function of the input. Most often, processes
contain many inputs and not as many outputs. Math is ultimately the language used to describe the
process. The neural network does all the bookkeeping and manipulations necessary to form data
associations. A key feature of the model shown in figure 4-1 unique to neural networks is that the
process is adaptive. This, combined with the statistical nature of neural networks, makes the
technology particularly applicable to Statistical Process Control.

Since neural networks are a data analysis technique, many applications are involved with
data collection and processing of raw data. Other applications may take conditioned data and
process it for a specific purpose or function. Once a process has been identified as a potential
neural network application, several considerations must be examined before the details of network
design, monitoring and control can be addressed. First of all, it should be determined whether or
not a neural network technique is applicable to the problem at hand. The nature of the problem, the
existence of other solutions, the time-frame for development, arnd the level of complexity involved
all affect the decision. When it appears that neural networks offer enough technical advantages to
pursue development, the following should be taken into account before choosing a particular neural
network:

- define the process to be modeled
- determine the number of inputs, outputs and related parameters
* consider the'type of data available, i cluding source, quality, confidence levels,

acceptable values, limits, initia conditions

- consider stability and convergence crii eria for the process
- will the process be run on or off line? ~nd does it involve time-sensitive data?

After considering the nature of the task at hand and the details of the process, a network has
to be chosen which will provi*de the functionality needed. Very many types of neural networks

20



exist, with others being developed continuously. Some popular neural networks have many

variations or options. Other applications involve the design of custom networks which emphasize

particular properties and features o, interest. The choice of a particular neural network will

consequently define the network's architecture and method of operation. Next, one has to

determine which path of in ,; mentation is most appiicable. Some neural networks are available in

hardware form, but most are: . ailable in software (source or executable code available as a specific

commercial application, a development system package, custom design, etc.). The method of

implementation often depends on how much time, money and manpower is available for the task,

as well as the complexity of the a.ýplication. Finally, " e user/designer of the neural network has to

be able to train the network and see how it performs.

Another concern fo- reliability applications is where in the life cycle process does th-e

application lie. The application should focus on either the requirement stage, specification stage,

design, test, production, operation or support stage, etc. Each stage has specific parameters,

concerns, and characteristics which must be modeled. In reliability, many of the models used in

different life cycle stages are related, since parameters such as failure rate or Mean Time Between

'Failure may be used in different parts of the life cycle. Other more generic applications of neural

networks which definitely apply to the field of reliability are to: filter out noisy data, help

determine the significance of data, identify data out of range, fill in for missing data, establish

defaults, improve on worst case values, and solve number intensive problems which are currently

done using graphical or other mathematical methods.

4.5 Potential Benefits

Neural networks bring with them an --ray of interdisciplinary methods which can be used

to represent and solve many kinds of data analysis problems. In particular, the problems dealt with

in reliability are especially applicable to the types of analyses performed well by neural networks.

With probability and statistics as common threads at the fundamental level, reliability and neural

networks form a natural pair. The benefits of using neural networks to perform reliability analysis

functions are increased automated capabilities, improved analytical efficiency, increased accuracy,

and adaptability. Each one of these alone would be a worthwhile achievement. The combination

of them carries enormous potential. The most significant feature of neural networks is their

adaptable nature. The ability to learn or adjust is the most powerful, desirable feature one could

build into a system. Neural network technology is in its infancy, but it still remains at the forefront

of endeavors to automate learning in machines. The long term goal of this work is to develop

automated tools and techniques which analyze R/MiT data more effectively. Neural networks can

ýIrovide the insight as well as the mechanism to achieve this goal.
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5.0 Basic Research in Data Analysis

The research done in this effort init~ally concentrated on data - plain and simple, raw data.

From its source to its destination, we have tried to characterize the nature of data by emphasizing
its frequency components. Using computer tools, statistics and other forms of mathematical

analysis, our multidisciplined approach has examined existing data analysis techniques and has

taken a hard look at the concept of data itself. What has come out of this fundamental approach has
been a better understanding of the big picture of information processing, as well as insight into

some of the details of data processing. Some very interesting concepts and theories have come

about. The main results appear in this section, with a perspective on what the research means in
section 6. The topics in this section include a brief discussion on the nature of data, how resulting
ideas led to a description of the nature of data in the form of a frequency-based spectrum, an octave

rule which is used to help focus and filter data, and considerations on the harmony of data and its

importance in the recognition and interpretation of data.

The concept of data makes no sense or means nothing if not put in the context of an
interpreting network or system. Here the system is a machine (computer), and the goal is to build
intelligence into the machine. As part of a thorough investigation of data analysis, physical sources
of data would have to be considered. In this effort the sources of data have included music and
images (colors, shapes, sizes, etc). Concentration on frequency components of data has indicated
that a correlation exists between information processing systems and the underlying physics of the
data signals involved. The idea of an orderly structure and nature to data, in its various forms,
began to take shape. Mechanisms to focus, interpret and communicate these forms of data were
proposed. Examination of human cognition and how it seemed to handle data communication,
learning, and understanding provided valuable if not novel insight. With beginnings in automated
technique going fromn artificial intelligence to neural networks, and with sights set on reliability,
going from reliability theory to analysis techniques, we have examined the nature of existing

* techniques, dealt with abstract research topics, and drearned of a science which involves much
more capable computing machines. With a humble start, we now introduce the main topics of our
research, the details of which are the subject of future work.

5.1 Physics, Frequency, and the Nature of Data

The physical sources of data examined have been audio signals in the form of music, and
visual signals in the form of images, focusing on colors, shapes and sizes. In considering the
various forms of data, underlying components and relationships appeared to exist, leading to a
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particular interest in frequency aspects of data. Further investigation continued to fuel ideas that
data inherently contained properties or components which must be exploited in order for intelligent

data processing to occur. In order for our brains (or our machines) to accomplish learning,
perception,, interpretation, comprehension, etc., data had to be used effectively. We were looking

for a way to do this, with hopes of using data in its most natural form possible. Conventional

computers seemed to come up short in the crucial areas of representation and programming.
Explicit, formal attempts to symbolize data could easily lead to the loss of important information.

Knowledge bases were rigid and awkward to build. Conventional computers have much difficulty

incorporating the concepts of perception, interpretation, learning and comprehension. Neural

networks appeared to offer much promise toward accomplishing some of our goals.

However, before getting into neural networks, we were interested in taking a closer look at

the characteristics of data itself. Some underlying components and features of data appc--red to

exist, but were not being utilized or even recognized well enough in attempts to a'ttomate

information processing. In our investigation, we first analyzed signals in music to deve'.op basic

ideas on data and data analysis, and then extended some of the ideas to other forms of dat'. A kind

of order or structure to data became apparent, which led to the development of the data ;pectrum.
The spectrum was supposed to help us represent and be able to describe the underlying concepts
involved in our analyses. Immediately the use of octaves, or intervals between two fzruquencies
having a ratio of two to one, became a natural choice for a good way to describe data ranges.

Harmony was also an obvious concept which needed to be considered. The ideas and concepts
which resulted were all aimed at automating some of the processes involved in information

processing. Neural network technology was conducive to the kinds of analyses we were interested

in, even though many of the advantages of neural networks have still not been fully realized. Of

course, we would take anything. we could get from c~onventional computers, not the least of which
was using them in our daily work.

5.2 The Dýata Spectrum

The data ýspectrum resulted from the desire to represent the natural order and structure of
data in a graphical way, similar to the way the .electromagnetic spectrum represents electromagnetic

signals. Fundam~ntal relationships, concepts and principles seemed to exist with respect to data,

but they didn 't s m to be characterized well enough. Our efforts provided us with a way to
represent and disc iss some of the issues involved in our research. Musical tones were analyzed

using the computer to see how the frequencies of these audio signals were related. Raw data, in

this case digitized music, contained tonal frequencies in the audio range of between 20 and 20K
hertz. However, it was apparent that the frequencies at which we interpreted music, and also the
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frequencies of our discussions on it, were in a much lower range. Lower frequencies yet could be

used to represent streams or sequences of data having longer duration, such as in songs, stories or

motion pictures. Input signals to the brain (raw data) had the highest frequencies of all, while

interpreting and thinking involved lower frequencies, and lowest of all were the frequencies of

longer duration data sequences. A filtering process had to occur in order for data signals to be

transformed from elements of higher frequencies to lower frequencies. Also, the complexity of

these elements could vary at any given frequency. It was envisioned that the complexity of signals
increased as one went from the core or center of the spectrum outward. The results are shown in

figure 5- 1.
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Figure 5-1. The Initial Data Spectrum. Data elements are shown as a function of frequency.
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In considering many of the elements and concepts to be placed in the data spectrum,

underlying issues concerning the actual nature of data came up. By this we mean that there seemed
to be more to data than just its existence in raw form. Raw data is that which has not yet been

organized. We all know of the form or state of data called information. This is data which has
already been organized in some fashion, having some form. Knowledge can be considered yet
another form of data. Naturally we wanted to map all forms of data onto the spectmm~. Going
from raw data to information to knowledge, the frequencies involved went from high to low. The

sensitivity or timeliness of data also went from high to low going from raw data to knowledge.
The amount of abstraction or complexity the data forms could take on went from low to high, with

knowledge being the most abstract. Also, the amount of conscious control required by the

receiving network to interpret the forms of data went from least to most control when going from

raw data to knowledge. By now we see the shell of a spectrum which can be used to represent the

complex nature of data, with its various forms and frequencies.

While all this was happening, other interesting characteristics of data were also being
noticed. The existence of octaves, as well as the importance of harmony, were concepts which
seemed to be related to the data spectrum. The use of the data spectrum was supposed to help
define data relationships and enable us to get a handle on the enormous task of making sense of
data. The framework that it provided seemed to enhance the concept of another framework we
have come to call the octave rule. The existence of order in data, and a corresponding order and
structure in data prccessmng networks, were intriguing aspects to be considered in the development

of automated- inform ation processing systems.

5.3 The Octave Rule

An octave in this sense is the smallest interpretable range possible in which a level of
abstraction, or attention, can easily exist. The interval or range of an octave involves components
of data whose frequencies, sizes, distances, etc., exist within a ratio of two to one. That is, data
components within one octave have relative frequencies, distances, or sizes which are contained in
a ratio of two to one. For example, if the ratio of frequencies of related data elements is more than
two to one, than more than one octave is involved. The largest entity in an octave is by definition
twice the smallest entity. By virtue of this small ratio, signals within one octave are already
relatively close to each other. In concentrating on frequencies in our analysis, the actual
differences in frequencies appeared to play a major role in the filtering and interpretation of data.
By grouping data into manageable, understandable ranges, the brain is quickly and efficiently able

* ~to process the data. Without some kind of mechanism (such as the octave rule) to keep order,
* confusion or chaos would result. The existence of the octave rule appeared evident in music and in
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visual images, but further consideration indicated that the octave rule is an important concept in the

effective management and control of many forms of data.

Images containing various shapes and sizes were generated using the computer to see how

they may involve the octave rule. By focusing on various portions of images, th~e octave rule

seemed to be followed by us as we focused and recognized objects. Data signals coming from the
most recognizable and interpretable objects or entities seemed to fall within one octave. This was
certainly a surprise to us. Also, the least pleasing or most difficult objects to look at covered more
than one octave. Certaini patterns appeared pleasing, while others appeared displeasing. Objects
whose size conformed to the octave rule, using whatever units for size that were sensible, seemed
to be focused on and recognized the soonest. Basic or primary colors were identified and selected
more easily and quickly among many similar shades. Certain colors, seemed to go well together
while others did not. This implied that some fundamental, inherent characteristics of data existed,
and that these characteristics were being exploited by the brain, under the heading of intelligent
information processing.

The effects of the octave rule were of course very obvious in music. Pleasing sounds, as
well as noisy or irritable sounds, could be created on the computer by combining musical tones
inside and outside of octaves. It was also noticed that harmony and harmonics played an important
role here, since you couldn't just mix any tones within an octave and get nice sounds. All of this

implied that the brain, somewhere and somehow, had to group data into ranges in an effort to
facilitate its interpretation. The fact that data was already grouped info pleasing, interpretable
ranges in music was a case in point. Music has been recognized as a universally pleasing form of
data. One hardly has to learn how to enjoy it. Music appreciation seems to be a built-in function
of our brain. If it is, then a correlation has to exist between the data signals which comprise music
and the nature and orderly operation of the brain. Even if the brain does not use the octave rule as
envisioned above, if we could perform any of the brain's functions by making use of the octave
rule, we would be making progress toward automating information processing.

Grouping or clustering of data is also part of the octave rule. Within one octave or range,
an optimum number of data items or pieces ef information exists, and it is a relatively small
number. It is almost as if something was limiting the number of data items or elements within a
range. This notion is related to the ability of interpreting only a certain amount of information at
one time, after which point noise or confusion results. Usually the number of items or groups we
can contain or think about is less than eight. Psychologists say seven. This would imply that as
part of the attention or concentration process, something was limiting or filtering data, at or near its
point of origin. As mentioned before, music provided a clear example of he~w information
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conformed to the octave concept. Also, musical chords are an example of how the octave rule
involves only a small number of pleasing, interpretable items of data as a group. In any event, the
octave rule seemed to be an important phenomenon, occurring in more than just music. The

concept has provided insight into some of the mechanisms involved in data recognition and
interpretation.

* 5.4 Harmony of Data

The concept of harmony was also related to the data spectrum and the octave rule,

providing additional ways to help describe data interaction. In terms of data analysis, harmony

involves the interference of many different kinds of signals. Interference involves the combination

of many signals, with the results being determined by the laws of constructive and destructive

interference. The amount of harmony in a network depends on how well the nature of the data

conforms to the nature of the network's architecture. This means that data, and the network
receiving and interpreting the data, should share some kind of order. Harmony is defined as a

pleasing arrangement of data forms. In music, harmony helps determine how well the data signals

sound. In images having colors, shapes, sizes, etc., harmony has to do with how recognizable or
ple-asing the images are to look at. For a system to be in harmony requires that its basic
components be in agreement with each other. For a data analysis system, the signals which enter,
gu~ processed, stored, and communicated ought to be in some kind of harmony. This may not
make much sense with respect to conventional computer systems, but it does when considering
parallel forms of data, as in parallel processing.

The concept of harmony brings with it such terms as frequency distributions, resonant
frequencies, signal means, harmonics, and overtones. The implications of incorporating these and
other related features together in some kind of automated network would seem logical. However,
the design of such a network or system is non-trivial, to say the I, ast.- The integration and
coordination of parallel, simultaneous, complex signals in a useful, efficient manner is something
machines will not be able to accomplish very well for many years. Yet we slowly approach that
goal. Many complex techniques and tasks have already been automated, and new methods are
constantly being developed. Hopefully some of the concepts and ideas which have been
introduced here will contribute to the goal.

As an example of how important the concept of harmony may be, an analogy is made using
the biological concept of homeostasis. The notion of homeostasis, and any stability resulting from
its mechanisms, are believed to be essential for the existence and continuation of life [30]. The
existence and use of stable signals or waveforms in the brain, in one form or another, shoult1 '%e a
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requirement for survival. The existence and use of intelligent waveforms, and the elimination of
undesirable signals, would have to involve the concept of harmony in some way. It would follow
that theories which explain why or how intelligent beings can even exist would have to include the
concept of harmony as part of them. This indicates how important harmony may be in intelligent
information processing systems. In this effort, we have probably raised more questions than
answers by examining the nature of data and how signalF get produced, transferred, and
processed. Whatever the case, we hope to determine the roles complex yet orderly signals may
play in the interpretation and communication of intelligible signals by starting with fundamental
laws of physics and mathematics and describing some of the underlying functions of information

-- processing. Perhaps then will we be able to automate some of these processes in an efficient

5.5 Future Work

The work we have confronted in this effort represents the surface of several enormous

tasks. We try to improve on reliability analysis in generic, far-reaching ways. We try to develop
neural networks into useful, much-needed applications. And last but not least, we try to build
intelligence into computers. Our work has only scratched the surface of these tasks. We have
raised many unanswered questions. Along with what has been mentioned in this section and in the
rest of this report, we have yet to consider many other important issues. Related areas such as
time, probability, logic, non-linear functions, and adaptive control systems will have to be
incorporated in the best of models. In order to do this, a better level of understanding of the issues
involved will have to be reached. This will take time. We can build designs now, and our
applications will be forced to evolve. But at the same time, we should have some of our sights set
on the bigger picture of what we are trying to accomplish. This section has described some Of OUr
research, with its long term goals, on data concepts and daita analysis methods. Much more
research is needed, as is work in the many areas of application development.

While the emphasis of this work has been on electronic neural networks, it is very clear that
the ultimate computing machine will be a combination of many different kinds of technologies, not
just neural networks. We do not have to worry about the ultimate machine right now. At this
point in time, we can only work on improving existing techniques. Conventional computers have
much to offer, yet their limitations appear to be best overcome by the advantages offered by neural
networks. But neural networks have disadvantages. And on it goes. Traditional Al continues to

J progress slowly. Many other technical areas will contribute to the technology of computing
machines, including fuzzy logic, genetic algorithms, abductive reasoning and expert systems, not
to mention the many hardware areas. Computing machines will definitely evolve.
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The ultimate goal is to develop a system or network which performs useful data analysis

functions in an automated fashion. This can be approached many different ways. The neural
network appro.ý-h envisions that mechanisms can be devetoned which performn functions
somewhat analogous to those of the human brain. While it is believed that man-made neural
networks will perform only some of the functions that living systems can perform, it is not
envisioned that they should work in exactly the same way. At some level, the functionality will be
similar, or perhaps the purpose will be similar, but the man-made systcmrs will be much different
from the living systems after which they are modeled. Two well known analogies which exhibit
similarities and differences between nature and machine concern methods of travel. One analogy is

between birds and planes, and the other compares legs with wheels. Each exemplifies similar

function, or purpose, but the methods of operation are very different. Computers and brains are

(and will be) very different in many respects. At the very least, they are made of different

materials, resulting in very different chemical and physical processes. However, in a more
practical sense, it is hoped that at least some of the overall functions of man-made information
processing systems can be made similar to those of actual biological systems.
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6.0 Perspective. on What the Research Means

The basic research in this effort was aimed at providing a means for performing data
analysis (eventually to be tailored for reliability analysis) in an automated fashion using neural

network techniques. The desired neural network techniques do not exist, thus requiring research
in this area. Since the means and mechanisms do not exist (ir. an automated fashion), we cannot

exactly describe how they work. We can, however, introduce ways in which existing methods

may be improved. This effort has involved investigating ways to perform -,utomated data and 1 "sis

using techniques modeled after the human brain (i.e. neural networks). While we cannot yet
provide detailed descriptions on how the analyses should be performed, we can suggest how to

begin modeling them. In this section we offer a larger perspective on what the research involves
rather than details on how to solve particular problems. The insight gained from our research has
enabled a much better understanding of the underlying processes. This section will d~scribe how

generic data analysis processes may work in humans, and how we may approach implementing

some of these processes in computers using neural networks.

It was determined during the feasibility portion of this neural network effort to narrow the

focus of the work to off-line software applications. Thus the work did not examine the neural
network areas of biology, computer hardware, or real-time software applications. Admittedly,
much research needs to be done in all of these areas, especially in the area concerning the reliability

of neural network hardware. In any event, the work needed to be focused, and reliability theory
and its basic analysis procedures were targeted first. In this focused area, under the heading of
off-line software techniques, neural networks currently offer limited capability for performing such
tasks as classification, modeling, optimization, and pattern recognition. These task's align well
with those performed in reliability analysis, which include allocation, correlation:, diagnosis,

evaluation, and prediction.

6.1 Automating Information Processing

To automate information processing, an-appropriate model is required. As alluded to
previously, many kinds of automated models and methods already exist, but none are powerful or
versatile enough to enjoy widespread use. Put simply, the perfect model does not exist. This
statement especially applies to the fledgling field of neural networks. Science and engineering have
come a long way without the help of computers, providing theory and the means to explain and
overcome many kinds of technical challenges. Mathematics has formed the foundation for these
manual methods and techniques, with the use of math spreading across all technical disciplines.
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Over the years, manual information processing has achieved very good results. In the whole

scheme of things, manual or mental processes account for most of the processing done today, and

humans will (arguably) always play a major role ir2 information processing. Humans will
definitely play a major role in intelligent information processing. However, with tite advent of

computers, more and more tasks are being automated, and this trend shows no signs of reversing.

Conventional computers have come a long way in a very short time, providing capabilities

unmatched by humans (as machines should provide). The results of conventional computers have
been useful, consistent, and accurate, obtained at very fast response times. Computers have

become practical to design, build, use, and maintain. Their use is widespread, to say the least, but

they do have severe limitations. Today's computers typically have only one central processing

unit. This serial nature seriously limits the kinds of processi.ig required for many complex tasks.

Another drawback of conventional computers is their tedious, unforgiving requirement for

programming. As good as computers are, they must be explicitly programmed to do exact
sequences of operations, not allowing for any unforeseen deviations. As it turns out, most of the

real world is far too complex to be described using explicit programming languages. Finally,

conventional computers do not handle incomplete or imperfect data very well, which is a
consequence of their explicit and rigid programming methods.

Research in learning has attempted to explain or better characterize the processes involved
in information handling and data analysis. If these processes are ever to be automated, then

limitations in conventional computers must be overcome. Also, the learning process must be better

understood. To understand learning, its processes must be broken down into areas which can

more rehdily be analyzed and investigated. The areas can all be perceived as involving data in

some form or other. These areas include physical data sources, sensory input, filtering and
focusing, feature extraction, harmony of data, association, comparison, interpretation, and
memory, among others. Investigation of these concepts, and of the operations which must occur
to allow them to exist, has indicated that a fundamental understanding of these processes is*
lacking. While this comes as no surprise, it does indicate that any attempts to automate these

processes will come up short if not based on something solid. Work performed in this effort has
attempted to examine fundamental processes, with the ultimate goal of being able to automate some
of them in a useful, efficient fashion. The contributions of this research include a better
understanding of information processing, ideas on how the learning process may work, and a
realization that the advantages of both conventional computers and neural networks will have to be

combined in future systems. Our approach to automate portions of information processing has
emphasized neural networks.
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6.2 The Learning Process

The most important and probably the least understood aspect of intelligent information
processing is learning. A characterization of the learning process is proposed here which is based
on frequency components of data. The research described in section 5 form-ed a starting point from

which to investigate and explain the functions involved in learning. Section 3.2.1 described how
learning is addressed in existing neural networks. In general, the entire learning process can be-

*thought of as a transformnation of data involving three forms: raw data, information and

knowledge. This is reflected in the data spectrum of figure 5-1. Physically occurring raw data

gets transformed into a transient state called information, and can then turn into a stable state called
knowledge. Knowledge is what ultimately gets stored in memory, with information and raw data

being intermediate, more time-sensitive phases which serve to feed the knowledge acquisition

process. This perspective is by no means the only one possible. Especially confusing is the
difference between knowledge Ad nformation. However, this perspective has proven useful in

our investigation of data ar'!i learning. Frequency appears to be a crucial factor in the
transformation of data in± learning, and thus we have placed initial emphasis on the frequency

aspects of data in our research.

To accomplish learning in the brain, data enters in a parallel fashion and gets filtered and

focused according to its sensory type (e.g. audio, visual, etc.). Data gets further decomposed by
the network in a process which uses relative differences in frequencies to filter and focus data into
increasingly finer ranges. This process, proposed here in the form of the octave rule, is an

* attentional process which determines or extracts features within particular ranges as relevant or
significant. The process helps allow data to be transformed from its raw state into information,

* and eventually into the form which gets stored in memory, called knowledge. All throughout the
process, signals become associated with existing forms of data. These associations can be thought
of as resulting from an interference process, having both positive and negative consequences.
Depending on how well the data interferes, or plays together, the extent to which it is in harmony
or agreement determines how well it can be interpreted or understood by the network. Again,
differences in frequencies, among other things, betweeai new signals and existing signals are used
in the learning process. Eventually a corporate memory or knowledge base is accumulated within
the network. This memory consists of many stored patterns which represent complex associations
formed as data enters and passes through the network. Learning is the process which results from

the many changes in data occurring in the network. Signal distributions are formed and stored in
the network's memory in the form of connection weights. The distributions, which represent data
associations, are composed of signals which have frequency, phase, and amplitude components.
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It is ultimately some combination of these components which determines the characteristic state of
the network at any given time. The state of the network dictates which types of signals can exist in
the network, both in terms of being interpreted or comprehended as well as being stored or
remembered.

This drastically simplified version of the learning process is enough to allow for a
mechanism to begin to be developed which enables the implementation of these processes in an

automated fashion, that is, in a machine. In so doing, one could extend the model further to
accommodate processes which enable automated communication of data patterns. Communication

is essentially the transfer of informption, which is precisely what must happen for the learning
process to occur. Useful, reliable forms of communication are so much a part of what we strive

for in the way of information processing that it ought to be incorporated in future automated

systems. In any event, the language of mathematics, and especially the areas of probability and

statistics, will play a major role in realizing this. As mentioned previously, reliability science will

benefit greatly from these accomplishments, since it has much to do with the issues of data
analysis, probability and statistics, computerized techniques, and cause-and-effect relationships, all
part of the automated learning process.

6.3 Harmony, Understanding, Thoughts., and Language

Data analysis and inform.ation processing occur in the human brain in such a way as to
allow understanding, thought, and communication. The brain inputs signals using all of its
senses, but seems to output using only two, verbal and body. Both of these forms of output can

be considered forms of language. Language and communication are essential features in learning
and intelligence, and they provide one of the few mechanisms by which to measure these
processes. This section will discuss how harmony, understanding, thoughts, and language may

be incorporated in a model which can be used to analyze data automatically. While this work has
been theoretical rather than experimental, it serves as a useful perspective and also as a stepping
stone for future research and applications.

If language is a key feature in intelligence, then it ought to be compatible with the more
basic or primitive features of intelligence such as thought, understanding, and other cognitive
processes (see figure 5-1). It is very difficult to evaluate language, and intelligence for that matter,
in a strictly symbolic sense, as emphasized in traditional AT. Symbolism is by definition at least
once removed from the concepts which it tries to represent. Granted, symbolism has its
advantages, and is definitely useful in the end, but it is not altogether obvious that symbolism is
what Al researchers are looking for as a means to an end. The gap of encoding intelligence is too
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large. A bottom-up approach based on the statistical and probabilistic nature of data does not
preclude the use of a formal, symbolic language at some later point in a network. It is believed that
Attempts to represent information in it's most natural state, and to build up a hierarchical network
based on concepts which are consistent and compatible with all forms of data, from the low end to
the high end, will provide the insight needed as well as the means to automate inform-ation
processing. The neural network approach embodies many of these features.K As data enters the brain, it gets converted from signals having higher frequencies to the
much lower frequencies which the brain can ultimately store. Also, since data enters in a highly
parallel fashion and is output in more of a serial fashion, much filtering must occur. This implies
that the information content of data must get filtered in a very orderly fashion, keeping interesting
features and ignoring extraneous ones, perhaps using the octave rule. For language and thought to
occur, it must be in concert with the underlying operations of the brain. This just means that
thought and language ought to be in harmony with the brain's basic operations. The work we have
done implies that frequency is one of the main properties of the underlying operations of the brain.
As a crude example, when something "makes sense", it may mean that the sensed signals (ideas,
words, actions, etc.) are in harmony with existing signal distributions in the brain. In this context,

harmony depends on the nature of data, as mentioned in section 5, and also on the existence of a
network which makes use of the nature of data. We have to better realize how important order is in
all forms of naturally occurring data, and we must develop mechanisms which allow many kinds
of complex signals to be associated in constructive ways.

Interference is a key concept in harmony. When signals are added or mixed together, the
constructive and destructive interference that takes place determines the resulting waveforms.
Interference between signals appears to produce difft.;rences in signals which help the brain focus
and concentrate, determine the relevance of signals, establish priorities, help make decisions, and
know wh~at to ignore. In terms of physics, basic laws and concepts must be followed for a stable
network to exist, and a description of the network should be possible using the language of

mathematics. Many other disciplines and skills are needed as well. An interdisciplinary approach
is needed in order to engineer fundamental concepts into useful systems.

Our work has centered around establishing a framework or foundation on which to dJevelop
and build intelligent machines. This includes autcmating methods which incorporate learning,
understanding, and communication. Definitions follow which are admittedly and necessarily
general, given the framework of the research and the abstraction of the topic. Intelligence is
defined as the ability to translate information into knowledge. This includes the ability to learn and
effectively apply knowledge in a changing environment. Learning is defined as acquiring
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knowledge, incorporating the concepts of change and purpose. Knowledge is defined as

familiarity gained through experience or association, and also as that body of information which

results from an experience. Understanding is defined as the ability to interpret, accept as plausible,

grasp the significance of, or the capacity to make generalizations. Thought is the process which

creates and uses waveforms, which includes the characteristics of priority, relevance and

significance of information. Communication is defined as the transfer of information. All of these

concepts have common threads, one being information. It appears as though a model can be

formed which hinges upon the association of these concepts. It should be noted that representation

is a major issue here. Each of the concepts mentioned above can and do have different meanings,

and the method of representing them is always an important concern.

6.4 Reliable Communication - Getting the Point Across

It was stated earlier that useful, reliable forms of communication are extremely important in

information processing. For information processing to be considered intelligent, however,

something more than communication, more than the transfer of information, is required. It is

necessary to be able to represent and convey certain significant data characteristics inherent in

intelligent communication. These characteristics can be described as data descriptors or statistics.

With communication being the transfer of information, intelligent communication is considered to 1,

involve getting the point across. The distinction here is noted in the mathematical analog or

equivalent of the point. The point, in a very simple sense, is considered the arithmetic mean. ,

Communication signals can be represented as data distributions, with each of them having a

reference or mean. The mean represents a significant component or characteristic of a distribution.

Intelligent communication relies on such components - they can be more significant than raw data

itself. The purpose of intelligent comrtunication would then be to get the point, or mean, across.

Other statistical terms and concepts can also be used to represent and process intelligent

communication. Of course, intelligent communication usually involves many signals, but for now

we assume that they can be combined into a small number of significant data distributions over a

certain time interval, perhaps at the expense of changing levels of abstraction (octaves). Basic

components of intelligent communication signals do exist, and their mathematical representation is

what we are after.

Communication consists of signals which must represent and convey the many features and

aspects of information inherent in the communication. The brain, upon receiving and recognizing

these signals, must form useful data associations or relationships. These associations must be an

accurate and appropriate representation of the features and characteristics of the. input signals in ,

order for communication to be effective. Data features entering the network will either form new
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connections (associations), modify eitn ones, or be ignored. Data occurrences,

approximations, and averages can all be represented using frequency distributions. It is believed
that the communication process, which underlies information processing and understanding, can
be represented in terms of physical signals and mathematical functions. Probability and statistics
especially can and should be used more effectively in the development of information processing
systems.

During communication, the data form called information is transferred from some source to
some destiination. The actual signals being transferred can be expressed as sine waves originating
from some physical source. The combinations and common occurrences of these signals can be

represented using frequency distributions. *For large amounts of data, normal or gaussian
distributions can be used to approximate many of the signal associations which are formed and
used in communication and learning. While it is extremely difficult if not impossible to know
exactly what is going on in the brain during learning, we can use approximations and averages to
represent the probabilistic and statistical nature of data signals involved in these processes. In

terms of implementing some of these processes in machines, we can use the characteristics of the

normal curve to describe some of the functions which occur. By averaging random phenomenon
over many observations, we can analyze, predict, and in general draw conclusions from data.

The communication process always involves the transfer of data in some form or other.
Groups of data can collectively be called messages. Since a message can consist of many pieces of
data, it becomes important to be able to identify and represent the main point of a message.
Phrases such as "get to the point!" and "what is your point?" emphasize the existence of main
themes of messages. As already mentioned, the point can be considered the arithmetic mean of a
signal distribution. The mean could be used to identify the mnain point of a signal distribution,
representing the combination of many data components which constitute that signal. When many
signals are involved, the main point would be some arithmetic mean or average of many signal
distributions. We should be able to represent and describe the signals mathemanically. The

* identification of the main poinis in communication, as well as the data components which reinforce
them (i.e., other statistics), would lead to understanding. Understanding is ideally envisioned as
occurring when the arithmetic means of (input) signals get aligned, to some degree, with those of
existing signals. While these statements are very simplistic, the underlying principles cannot be
ignored. We try not to build exact copies of biological systems, but to build useful models.
Certainly communication involves more than just getting the point, or mean, across. Simple
concepts are good to start with, provided they are, not too simple.
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Statistics provides many terms and concepts which can be used to describe data, and thus
can be very useful in describing information processing. Descriptive and inferential statistics,
probability, combinatorics, samples and populations, dispersion, correlation, estimation, mean,
variance, standard deviation, confidence intervals, hypothesis testing, regression analysis, and the

central limit theorem are just a few of the important concepts and terms [ 161 which must be applied
to the information processing domain. Unfortunately, th~e information processing domain has yet
to be ref-,ed, if it is even defined. The preliminary concepts and ideas presented here (or
anywhere for that matter) on automating information processing should eventually be subject to all

the rigors of mathematics and appropriately tested.

The communication process can also be described in tcrms of a cause and effect
relationship. The cause is the source or originator of communication. The source conveys some

message or entity to some destination. The communication may be one-way, or perhaps caused by
some event in nature which may not even be considered intelligent. However, the issue then
would become one of intelligent interpretation of input signals rather than of intelligent

communication. In any event, signals get physically created or produced by some source. The
destination then receives the message or entity and incorporates it into its network. Of course the
extent of interpretation is proportional to the amount comprehended or learned, which has to do
with how effective the communication or signal transfer was. The result, or effect, is a physical

change in the destination network. The change in the context of neural networks would most likely
take place in the form of modified connection weights.

6.5 Data Analysis - Making Sense of It All

Data analysis and information processing are terms which have been used somewhat
interchangeably in this report. No attempt has been made to associate them with the meanings
suggested in section 5 for the root words data and information. The difference there betwe¶f data
and information was described in terms of levels of sophistication, with raw data being the lowest
form. The assumption overriding all of this discussion is that communication is essential tý data

- analysis and information processing. Whether done by man or machine, and whether perfonining
analysis, computation, processing, inputting or outputting, communication has to be involved As-
already mentioned, this discussion involves the development of intelligent systems. '~ith
communication as an overall requirement, a characterization of the communication proces~ is
necessary. This effort has attempted to investigate and establish fundamental concepts involv4ý in
intelligent communication, certainly part of the big picture. The work has involved analysis of
neural networks and other computer techniques, and has looked at similar human cognitive
processes for insight. This work has been conceptual and abstract, attempting to characterize very
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complex processes. Given this, it is very difficult to prove many of the statements made here.
However, it is believed that attempts' to substantiate or disprove these claims can and should be

made in the future, and will prove very useful.-

Another important issue needs to be brought up now. The issue has to do with the overall

purpose of data analysis, with living systems providing important precedents. The issue is very

debatable, but it is believed that one of the main purposes of intelligent in~formation processing and

data analysis systems is to provide, the mechanisms and abilities needed to make good decisions.

The survival of intelligent beings depends to a large part on their decision-making abilities. Good

decisions require knowledge of relevant factors and a good understanding of what each of the

factors mean. The understanding does not have to be very advanced, but the consequences of
making a decision must be clear to be able to learn from the decision. Along with typical
definitions of what a decision is, decision mechanisms involve such issues as reference signals,

sums and differences, variations, priority schemes, thresholds, trade-offs, uncertainty and change.
To make so-called "good" decisions, many complicated processes must occur. To automate some

of these functions, not only do we have to understand the processes, but we also have to be able to
implement them in some kind of network. This is no easy task.

The network of choice will ultimately be some kind of computer, but it will have to
incorporate more than conventional hardware and software techniques. Based on the state-of-the-

art of conventional computers and our understanding of intelligent information processing, today's
computers do not have what it takes to handle the concepts of intelligence and learning. Serial
architectures and rigid programming have left too much to be desired as far as computers are

concerned. Lack of understanding of what intelligent processes really involve has eluded
researchers thus far, leaving areas such as traditional artificial intelligence unable to capture the

essence of intelligence. Traditional Al has provided many inroads, however, such as in the areas
of knowledge based systems and automated reasoning, but something fundamental still appears to
be missing. If we knew how intelligence worked, we could program it on our favorite computer.
However, we do not. Other approaches will have to be considered. Models need to be based on
fundamental concepts rather than abstract ones. We suggest first investigating the physics of data.
What seems to be missing from all of information processing is a fundamental understanding of the
nature of data. Also, basic concepts in mathematics, such as probability theory and statistics,
should be used more effectively. Decision theory may be a good place to start. Perhaps existing
theories need to be refined, or new ones proposed to help researchers overcome existing
computational bottlenecks. Something has to change to make way for better automated techniques.
The approach of this effort has been to consider the big picture (top-down) of automating
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information processing, and then to construct a model based on fundamental principles (bottom-

up); that is, to understand the underlying concepts of data analysis and information processing,

and then to develop techniques and models which incorporate these processes in effective ways.

To summarize what has been discussed in this section, the perspective is that data analysis

and information processing can be performed in machines using models which perform functions

analogous to those in the humaln brain. The purpose, iai;uably, is to ena.be ,_'itelligent decisions.

Intelligence requires understanding, which requires communication, which requires language.

Understanding involves the ability to learn and to generalize. All of these processes must be

realized and accomplished in some kind of network which exploits the inherent components of

data. Frequency components have been emphasized in this work. Signals containing high

frequency components enter the brain in a parallel fashion. Data gets filtered and focused into

various ranges or levels (octaves), resulting in lower and lower frequencies. Harmonic signals get

formed as a result of signal interferences in the network. Signals with the strongest harmonics are

those which best represent the nature of the data and conform most to the structure of the network.

Resulting signals can be used by the network to learn, and can be stored as knowledge in the form

of connection weights (memory). The weights represent various forms and kinds of data

associations, and can be output using some kind of language, resulting in communication, which

keeps the process going.

For intelligent information processing to exist within a network, the network must conform

to laws of physics. Mathematics can be used to describe the internal processes and functions.

Probability and statistics will provide much toward this end. Probability provides concepts which

represent the true random nature of data, while statistics provides useful and powerful methods for .

describing the nature of data. Reliability analysis will benefit greatly from the resulting

developments, and it will also provide as a contribution many of the characterizations and methods

which are already part of its science. Concepts and terms from reliability science can be used to

help describe and characterize many of the forms and uses of data in automated information

processing, and developments which result from automating information processing can be used to

improve reliability analysis itself. The fundamental links which exist between information

processing and reliability theory will thus benefit both areas. It is our intent to tie together

fundamental concepts in physics, mathematics, reliability, computers, engineering, and cognitive

science, among other disciplines, in effort to automate functions which would be desirable and

useful in future Air Force systems.

39---- -- /



---- --- --- ----

7.0 Statistical Neural Network A Prototype Application

Many current neural network applications provide unique solutions to problems which are

too abstract in nature to be programmed by conventional methods. The electronic versions of
neurons and their connections can provide parallel processing, adaptive learning, and other features
which today's computers cannot replicate. However, along with these abilities, neural networks

bring new problems and complexities which must be solved.

One of the major hurdles in developing a neural network application is choosing or

establishing a suitable architecture. Since the neural network architecture must handle data
effectively and efficiently, data statistics are a good starting point when addressing architecture
considerations. To demonstrate how statistics can be used to help design a neural network
architecture, this section will describe the design process of the Statistical Neural Network, provide

a step by step description of the network's operation, and give an example of the Statistical Neural
Network in action. The significance of this application is to show how statistics can be used to
describe natural tendencies in data, which can lead to more efficient neural network designs and

data analysis capabilities.

7.1 Statistical Network Design

The Statistical Neural Network uses statistical features of data to aid in the design of the

network's architecture. The more available and representative the data is, the better the results.
Various data descriptors can be used in the design of a network, such as:

* location (e.g., mean, median, mode, etc.)
- dispersion (e.g., range, variance, standard deviation, coefficient of variance, etc.)
* correlation (e.g., covariance, correlation coefficient, linear regression, etc.)

For this application, data was generated by computer with the aid of the mathematical software
package called Mathemnatica [31]. Figures 7-1 through 7-4 represent the data sets generated and
used for this application. The data in these graphs do not have any units attached to them yet,
representing four generic data sets labelled data I through data4, respectively. Units for the four
data sets used in this particular application will be assigned later.
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The theory behind the Statistical Neural Network is that it conforms its architecture to data

through the calculation and use of important data descriptors. Many kinds of data descriptors

exist, and there are many ways to combine them [16]. To illustrate how statistics can be used in

the design of a network architecture, the following basic descriptors were used in this application:

* mean
* range
* correlation coefficient
* linear regression line
• mean square error

Before calculating values for these descripters, it is necessary to preprocess the data by grouping it

into corresponding sets. The data is listed below in tabular format, consisting of one hundred data

samples, in sets of four:
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data 1 (304, 5.31837, 44, 5), (299, 3.91846, 52, 5), (300, 4.62778, 44, 6), (306, 3.6149, 50, 5), (302,
3.38225, 46, 4), (307, 6.20638, 43, 5), (310, 5.00446, 41, 5), (309, 5.54532, 46, 5), (304, 4.846, 41, 4),
(313, 4.2878, 43, 5), (306, 3.93481, 37, 4), (315, 5.58198, 36, 3), (311, 4.59175, 41, 4), (318, 5.18741,
37, 3), (316, 3.94637, 36, 3), 1315, 4.91556, 38, 3), (321, 6.09458, 29, 2), (318, 3.8803, 34, 2), (317,
4.46967, 34, 3), (320, 4.65441, 30, 1), (318, 4.93863, 27, 1), 1324, 4.20427, 25, 1), (321, 5.34331, 23, 2),
(322, 4.07454, 30, 1), (329, 6.49557, 26, 2), 1326, 6.14121, 20, 2), (331, 5.77097, 21, 1), (323, 5.68284,
27, 2), (331, 5.61888, 20, 2), (325, 5.40303, 20, 1), (327, 3.79244, 15, 1), (332, 4.07016, 17, 0), (335,
4.13761, 15, 1), (331, 3.66273, 12, 1), (340, 6.67676, 13, 0), (337, 4.83665, 14, 0), (334, 5.3484, 13, 1),
(341, 6.07406, 10, 0), (335, 4.90646, 6, 1), (344,4.22754, 6, 1), 1340, 5.14997, 13, 1). (340, 5.75343, 14,
2), (341, 5.41901, 10, 0), (348, 6.39532, 11, 1), (349, 6.68047, 5,2), (347, 4.44835, 9, 2), (350, 4.70566,
11, 0), (343, 3.46611, 12, 0), (350, 6.43853, 10, 1), (352, 6.08991, 9, 0), (351, 4.05826, 9, 2), (354,
5.56266, 14, 1), (351, 6.37007, 6, 1), (356, 4.87563, 6, 1), (354, 3.53548, 10, 2), (361, 4.37084, 5, 1),
(352, 6.25291, 14, 2), (353, 5.14325, 12, 1), f(354,.6.35959, 14, 0), (364, 4.87547, 15, 1), (362, 3.93456,
10, 3), (362, 6.61371, 8, 4), (363, 5.07228, 12, 3), (367, 4.64878, 11, 3), (363, 6.58352, 10, 4), (364,
3.50017, 11, 4), (363, 4.17494, 9, 5), (368, 6.34582, 14, 4), (364, 5.86369, 12, 5), (367, 6.19878, 12, 5),
(369, 6.26682, 13, 5), (368, 3.51247, 8, 5), (369, 4.96642, 10, 6), (373, 6.55415, 5,6), (374, 4.67431, 6,
6), (381, 5.99145, 9, 6), ( 373, 5.03789, 7, 6), ( 379, 5.10556, 11, 7), (379, 4.92649, 10, 7), ( 375, 4.91083,
7, 7), (385, 6.69842, 15, 7), (380, 3.67288, 15, 7), (379, 4.20384, 10, 8), (384, 6.62349, 9, 8), (386,
3.37296, 9, 9), (384, 3.55709, 8, 8), (386, 4.2112, 5, 8), (390, 6.68575, 9, 8), (386, 5.98952, 8, 9), (391,
5.12559, 10, 9), (388, 6.4455, 7, 9), (391, 6.34277, 6, 9), (390, 3.5013, 13, 9), (391, 6.28877, 14, 10),
(400, 4.51984, 7, 10), (395, 6.53837, 13, 10), (401, 3.46258, 10, 11), (400, 6.26843, 8, 11), (398,
5.26257, 13, 10), (395.4.89994, 11, 11))

Next, the data sets are divided into four parts. For this example, let us assign the four data

sets to represent the parameters temperature, vibration, humidity, and number of failures,

respectively. Each of the four data parameters are listed separately below:

datal = temperature = (304, 299, 300, 306, 302, 307, 310, 309, 30.4, 313, 306, 315, 311, 318, 316, 315, 321,
318, 317, 320, 318, 324, 321, 322, 329, 326, 331, 323, 331, 325, 327, 332, 335, 331, 340, 337, 334, 341,
335, 344, 340, 340, 341, 348, 349, 347, 350, 343, 350, 352, 351, 354, 351, 35t), 354, 361. 352, 353, 354,
364, 362, 362, 363, 367, 363, 364, 363, 368, 364, 367, 369, 368, 369, 373, 374, 381, 373, 379, 3179, 375,
3585, 380, 379, 384, 386, 384, 386, 390, 386, 391, 388, 391, 390, 391, 400, 395, 401, 400, 398, 395)

data2 = vibration = (5.31837, 3.91846, 4.62778, 3.6149, 3.38225, 6.20638, 5.00446, 5.54532, 4.846, 4.2878,
3.93481, 5.58198, 4.59175, 5.18741, 3.94637, 4.91556, 6.09458, 3.8803, 4.46967, 4.65441, 4.93863,
4.20427, 5.34331, 4.07454, 6.49557, 6.14121, 5.77097, 5.68284, 5.61888, 5.40303, 3.79244, 4.07016,
4.13761, 3.66273, 6.67676, 4.83665, 5.3484, 6.07406, 4.90646, 4.22754, 5.14997, 5.75343, 5.41901,
6.39532, 6.680-47, 4.44835, 4.70566, 3.46611, 6.43853, 6.0899 1, 4.05826, 5.56266, 6.37007, 4.87563,
3.53548, 4.37084, 6.25291, 5.14325, 6.35959, 4.87547, 3.93456, 6.61371, 5.07228, 4.64878, 6.58352,
3.50017, 4.17494, 6.34582, 5.86369, 6.19878, 6.26682, 3.512A7, 4.96642, 6.55415, 4.67431, 5.99145,
5.03789, 5.10556, 4,92649, 4.91083, 6.69842, 3.67288, 4.20384, 6.62349, 3,37296, 3.55709, 4,2112,
6.68575, 5.98952, 5.12559, 6.4455, 6.34277, 3.5013, 6.28877, 4.51984, 6.50837, 3.46258, 6.26843,
5.26257, 4.89994)

data3 =humidity = (44, 52, 44, 50, 46, 43, 41, 46, 41, 43, 37, 36, 41, 37, 36, 38, 29, 34, 34, 30, 27, 25, 23,
30, 26, 20, 21, 27, 20, 20, 15, 17, 15, 12, 13, 14, 13, 10, 6, 6, 13, 14, 10, 11, 5, 9, 11, 12, 10, 9, 9, 14, 6,
6, 10, 5, 14, 12, 14, 15, 10, 8, 12, 11, 10, 11, 9, 14, 12, 12, 13, 8, 10, 5, 6, 9, 7, 11, 10, 7, 15, 15, 10, 9, 9,
8,9, 9, 8,10, 7, 6,13, 14, 7, 13, 10, 8, 13, 11)

data4 = number of failures = (5, 5, 6, 5, 4, 5, 5, 5, 4, 5, 4, 3, 4, 3, 3, 3, 2, 2, 3, 1, 1, 1, 2, 1, 2, 2, 1, 2, 2,
1,1, 0, 1, 1,0,0, 1,0, 1, 1,1, 2, 0, 1, 2,2, 0, 0,1,0,2,1, 1,1, 2, 1,2, 1,0, 1, 3,4, 3, 3,4,4, 5,4,5, 5,
5, 5,6, 6,6, 6,6, 7,7, 7,7, 7, 8.8,9, 8, 8, 8.9. 9, 9, 9,9, 10, 10, 10, 11, 11, 10, 11)
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Data descriptors are then calculateld for each range harmonic, from the first up through the

seventh harmonic. Range harmonic is a term used to describe a portion of the data set. For

example, the first harmonic represents the entire data set; the second harmonic, first sector

represents the first half of the data set; the second harmonic, second sector rep-esents the second

half of the data set, and so on. The number of range harmonics can vary, depending on the

particular application. For this case, seven appeared to be a good number to start with. The data

was presented as it appears in Figures 7-1 through 7-4, but since these descriptors are

dimensionless (independent of any units), the data can be used in any sequence.

The formulas used to calculate values for the various data descriptors in the first range

harmonic are given below. The variables used in the formulas are abbreviated as follows:

- datal - temperature
* data2 - vibration
- data3 - humidity
• data4 - number of failures
"* mean - mean

* var - variance
* range - range
• MSE - mean square error
* bI - constant
• bO - constant

s $ - covariance
* r - correlation coefficient
* norm - normal coefficient
* yhat = bO + bl(x) - linear regression line

The numbers in the variables indicate which data sct was used (e.g., r12 is the correlation

coefficient between datal and data2; norm34 is the normal coefficient for data3 used to find

data4). The formulas are illustrated in Mathematica format as follows:

datalmean = N[(l/n)Sum[datal [[ill, (i, n)l] = 350.1

datalvar = N[(l/(n-l))Sum[(datal[[il] -datalmean)A2, {i, nil] = 831.768

datalrange = Max[datal] - Min[datal] = 102

data2mean = N[(I/n)Sum[data2[[i]], {i, n)]] = 5.09889

data2var = N[(I/(n-1))Sum[(data2[[i]] - data2mean)A2, {i, n)]l = 1.02994

data2range = Max[data2] - Min[data2] = 3.32546

data3mean = N[(I/n)Sum[data3[[i]], {i, n}]] = 17.7

data3var = N[((/(n-1))Stm[(data3f[ill - data3mean)A2, (i, nfl] = 157.283

data3range = Max[data3l - Min[data3] =47
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data4mean =N[(1/n)Sum[data4[Iill, fi. nfl]] 4.01

data4var = N[(1/(n-1))Sum[(data4[ [ill - data4mean)A2, (i, nfjl =10.0504

/ '"data4range =Max~dat,4] - Min[datA4] = I1I

bi (Surn[data2t[i]]daal [[ill, (i, nil - (Sumfdata2[[i]],
(i, n)ISuintdatal [fill, (i. n) ])/n)/(Sum [data I [i]1A 2,
f i, n)]I - n(datal mean A2)) = 0.00614082

bO =data2mean - (datalmean)bl = 2.94899

ybat12 = bO + bl(x) = 2,94899 + 0.00614082 x

MSE12 = (1/(n-2))Sum[(data2[[i]] - (N) + (bl)datal [[i]]))A2, [i, n)] 1.00876

bi = (Sunhfdata3[[i]]daLal[[iilj, Ii, nil - (Sui[data3t~i]],
(i, n) ]Sum[datal [[ill, (i, n) ])/n)/(Suni[datal [Hi]]A2,

2.(i, n)]l-n(datalmeanA2))= -0.346894

hO =data3mean - (datal mcan)b I = 139.148

ybat13 ='hO + bI(x) = 139.148 - 0.346894 x

MSE13 = (1/(n-2))Sum[(data3[[i]] - (bO +(bI)datal[[,]]))A2, fi, nil 57.7752

hi = (Sun[data4fti]]datal [[ill, (i, nil - (Sumfldat~a4[Iifl,
fi, n)ISuinfdazal [[il], (i, n ) )/h)/(Surn~datal [[il]A2,
[i, ni - n(datalmeanA2)) =0.0700091

hO = data4mean - (data Imean)bI = -20.5002

yhat14 = b) + bl(x) = -20.5002 + 0.0700091 x

4 MSE14 = (1/(n-2))Sum[(data4[[i]] - (bO + (bl)dat~al ffil]))A2, (i, nil] 6.03464

hi = (Sum[data3[[illdata2[[ill, (i, nil - (Suxnfdata3[[i]],
ji, n) ]Swn[data2[[i]], (i, ni ])/n)/(Swn~data2[[i~lA2,
fi, nil - n(data2meanA2)) = -2A43737

bO = data3mean - (data2mean)bl =30.1279

yhat23 = N) + bl(x) = 30.1279 - 2.43737 x

MSE23 = (1/(n-2))Sum[(data3[[il] - (bO + (bl)data2[[il]))A2, Ii, nil =152.707

hi = (Swn~datA4[[i]]data2f[i]], fi, nil - (Sum~data4[[i]1,
Ii, n) ]Swn[daia2[[i]], (i, n) ])Mn)/(Suxn[data2ffi]]A2,
I i, n)] - n(data2meanA2)) = 0.0582553

hO = data4mean - ( data2mean)b I = 3.71296

ybat24 = N) + bl(x) = 3.71296 + 0.0582553 x

MSE2.4 = (1/(n-2))Sum[(data4[[i]] - (bO + (bl)data2[[i]]))A2, Ii, nil] 10.1494
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bl = (Sumx[data4[lifldata3[Ji]], (i, n)l - (Surii[data4[[i]l,
(i, n)]Sum[daia3[[ill, (i, n) ])/n)/(Sunldata3[[i]]A2,
{i, n) j - n(data3meanA2)) = -0.0288164

bO = data4mean - (data3mean)bl = 4.52005

yhat34 = bO + bl(x) = 4.52005 - 0.0288164 x

MSE34 = (1/(n-2))Sum[(data4[[i]] - (bO + (bl)data3[[i]]))A2, Ii, n)] = 10.021

s12 = N[(l/(n-1))Sum[(dataI [(i]l - datalrmean)
(data2[[i]] - data2mean), (i, n)]] = 5.10773

s13 = NI(1/(n-1))Sum[(datal[[ill - datalmean)
(data3[[i]l - data3mean), {i, n) 11 = -288.535

s14 = N[(1/(n-1))Sum[(datal [[i]l - datal mean)
(data4[[i]] - data4mean), Ii, n)i] = 58.2313

s23 = N[(l/(n-1))Sum[(data2[[i]] - data2mean)
(data3f[if] - data3mean), (i, n)]1 = -2.51034

s24 = N[(l/(n-l))Sum[(data2[[i]] - data2mean)
(data4[[ii] - data4mean). Ii, n)]] = 0.0599993

s34 = N[(I/(n-1))Sum[(data3[[il] - data3mean)
(data4[[i]] - data4mean). (i, n)]] = -4.53232

r12 = sl2/(Sqrt[datalvar]Sqrt[data2var]) = 0.174511

r13 = sl3/(Sqrt[datalvar]Sqrt[data3var]) = -0.797733

r14 = s14/(Sqrt[datalvar]Sqrt[data4var]) = 0.636889

r23 = s23/(Sqrt[data2var]Sqrt[data3var]) = -0.197236

r24 = s24/(Sqrt[data2var]Sqrt[data4var]) = 0.0186487

r34 = s34/(Sqrt[data3var]Sqrt[data4var]) = -0.113996

norml2 = (r12)constantl2 = 0.0203322

norml3 = (rl3)constantl3 = -2.14498

norml4 = (r14)constantl4 = 0.313489

norm23 = (r23)constant23 = -9.27024

norm24 = (r24)constant24 = 0.201144

no .r34 - (r34)constant34 = -0.100133

The number of correlation coefficients needed for the Statistical Neural Network is equal to

the combination of the number of data parameters (e.g., four) taken two at a time (i.e., 4!/2!2!).

For the normal coefficients, order matters, so their number equals the number of permutations of

data parameters taken two at a time (i.e., 4!/2!). Therefore, for each range harmonic, there are 6
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correlation coefficients and 12 normal coefficients. In addition, there are 12 linear regression lines

for each range harmonic. A linear regression line provides the user with a way to estimate one

parameter given another. For example, the linear regression line "I to 2" can be used to predict

data parameter 2 given data parameter 1. Figures 7-5 through 7-10 below represent graphs of six

linear regression lines: I to 2, 1 to 3, 1 to 4, 2 to 3, 2 to 4 and 3 to 4, respectively. The other six

related regression lines (2 to 1, 3 to 1, 4 to 1, 3 to 2, 4 to 2 and 4 to 3) could be plotted by

inverting the axes. It is apparent that these lines do not fit the initial data set very well. This is

why it is necessary to look at an adequate number of range harmonics in order to get good results.

After performing the above calculations for all seven range harmonics (28 in all), then the

best results are used to help build the network. The key factors used to detenrine which results are

best are the normal coefficient and the correlation coefficient.
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The normal coefficient equals the range of the data set divided by the square root of the

Mean squared error (MSE). This scalar number is normalized between 0 and 1, and then
multiplied by the correlation coefficient. It is named the normal coefficient because it normalizes
two important factors (range and MSE) used to determine the best range harmonic for each
particular range. The correlation coefficient is a number between -I and 1 and represents the
amount of linear correlation between two data sets. The closer the number is to 1, the greater the
degree of linear correlation (as in Figures 7-5, 7-7 and 7-9 above); the closer the number is to -1,
the greater the degree of inverse linear correlation (as in Figures 7-6, 7-8 and 7-10 above); the
closer the number is to zero, the lesser the degree of linear correlation.

Using normal coefficients, correlation coefficients and range harmonics, the network can
now be constructed. Figures 7-11 through 7-16 are bar graphs representing all the normal
coefficients (entitled "Normal (# to All)") and correlation coefficients (entitled "Linear
Relationship") for all seven' range harmonics. To make it somewhat easier to read, all the solid
bars represent odd range harmonics, while all the diagonally slashed bars represent even range
harmonics. Figures 7-11 through 7-14 are used to determine the number of nodes in the first
hidden layer (priority rating) while Figures 7-15 and 7-16 provide a confidence rating of linearity

7 for the results of the network.

The network constructed from this data is represented in Figure 7-17. Starting from the top
and working down, the first layer consists of four input nodes. Th.ese nodes take in values for
each of the four input parameters. The next layer, the first hidden layer, has all the nodes
necessary to represent all combinations of four data sets taken two at a time, with all ranges
included within each combination. These nodes are created by taking the greatest absolute values
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from the normal coefficients of Figures 7-11 through 7-14 and adding a node until all ranges are
covered for each combination. For example, the oval on the far left in Figure 7-17, labeled "from
1" and "to 2", is constructed from the bar graph in Figure 7-11 labeled "1. to 2". The circles in
each oval represent nodes. Each of these nodes has two inputs, shown coming into the top of each
oval, and each node has one output, shown going into the second hidden layer. For clarity and
convenience, not all of these connections have been shown. Each of the numbers in the nodes
represent the range harmonic from which it came. For example, 7.2 found in the first node in
Figure 7-17 came from Figure 7-11, graph 1 to 2, and signifies the seventh harmonic, second
sector. It was chosen first because it has the greatest absolute value in Figure 7-11, graph 1 to 2.
In this first oval, eight harmonics were needed to cover the complete range. If the first range
harmonic had been chosen first, then there would have been no need to choose another, since the
first harmonic covers the entire range.

After all of the nodes are created for each combination, the second hidden layer is built by
having a node represent each combination from the first hidden layer. Each node in the second
hidden layer has one input connection which comes directly from its combination in the first hidden
layer. Each node here has one output which goes to the appropriate output node. The output layer

3, contains the same number of nodes as the input layer, since the same parameters are being
represented in these two layers. In this example, the four input and output nodes represent
temperature, vibration, humidity, and number of failures, respectively. Each of the nodes in the
output layer has three input connections which come from the combinations in the second hidden
layer. This enables the network to predict values for up to three parameters not present at the input
layer. For example, if you know the temperature, vibration, and humidity, but not the number of
failures, then the network would provide its best guess for the number of failures.

7.2 Network Operation

Data enters the network at the input layer (see Figure 7-17). The minimum value within
each range is subtracted from the data values at the input nodes. The resulting values are then
multiplied by a weight which is equal to 1 over the range (i.e., 1/range). These weights are
represented by the black arrow connections going from the ii put layer to the first hidden layer.
This process normalizes the data so that the first hidden layer can handle it more readily. Each of
the input nodes sends a binary signal to its corresponding outputs indicating whether it is on or off.
A "I" is sent if on, and a "0" is sent if it is off. These binary signals are representedI by the red
arrow connections going from the input layer to the first hidden layer. The nodes in the first
hidden layer are linear in nature with a dual threshold. Each node is activated only if the sum of
two signals, one being the manipulated value and the other being the "0" or "1", falls between a
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lower and upper threshold. The upper threshold equals the sector divided by its harmonic (e.g.,
7.2 has upper threshold equal to 2/7); the lower threshold equals the sector minus one, divided by
its harmonic (e.g., 7.2 has lower threshold equal toi1/). Therefore, only one node in a particular

combination will fire if the harmnonics do not overlap. Also, for each red connection that carries a
"I" then all the nodes in that particular combination will be inactive because a '1 added to any

input will always put the value above the upper threshold.

Activated nodes in the first hidden layer output their computed linear value along with the
absolute value of thcir normal coefficients. Non-activated nodes output two zeros. The second
hidden layer must then choose the computed linear value from each group which has the highest
normal coefficient. The computed linear values chosen are converted back to their original states
and passed through their respective linear regression equations to establish a best guess value for

each remaining combination. The resulting numerical values are passed to the output layer, along
with their normal coefficient and the absolute value of their correlation coeffidient. At the output

layer, the highest correlation coefficient indicates the network's solution toý the problem. The
network provides its answer with both the normal and correlation coefficients attached. The closer

the normal and correlation coefficients are to one, the more likely the associated numerical answer
is an accurate one. However, the coefficients do not represent a probability or a percentage of
accuracy. The normal coefficient represents a priority rating, and thc corrielation coefficient
represents a confidence rating. In Figure 7-17, the colored nodes in the first hidden layer represent
the values of the priority ratings for each particular node, and the dual-colored 'nodes in the second
hidden layer represent the values of the confidence ratings for that particular node, with the top
color being the maximum expected and the bottom color the minimum expected. An example. of
the Statistical Neural Network is provided next to give more insight into the network's operation.

7.3 Statistical Neural Network in Action

This Statistical Neural Network will operate if one, two, or three inputs are provided. In
this example, three inputs are given as: temperature =380"K; vibration = 4 kI-z; and humidity
15%. The forth input parameter, number of failures, needs to be determined by the network. The
first thing that happens when the inputs are passed through the input layer is to subtract the
minimum value of the range from the original samples for all the inputs:

"* temperature (WaaW: 380 - 299 = 81
"* vibration (data2): 4 - 3.38 = 0.62
"* humidity (data3): 15 - 5 =10
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Next, when these numbers are sent to the first hidden layer, they are multiplied by the values of the
connection weights (here a connection weight is equivalent to I over the -range):

- datal1: 81 +102 =0.79412
* data2: 0.61773 + 3.32546 =0. 18576
- data3: 10 +~ 47 = 0.21277

In the first hidden layer, these numbers are summed with the values carried on the red connections
shown in Figure 7-17 (having values of "1" or "0"). In this example, since the first three input
parameters are given, the only nodes in the first hidden layer which could possibly be active are
those connected by the red arrows coming from input 4 (14). The three active groups of nodes are
the third, sixth and ninth groups (or ovals), labelled "from I to 4", "from 2 to 4", and "from 3 to
4", shown from left to right in Figure 7-17. The lower and upper thresholds for these nodes are

* listed below, first by group and then by priority:

"*"from 1 to 4" nodes:
- "2.2": lower = 0.5; upper = 1.0
- "3. 1": lower = 0.0; up~per = 0.333
- "3.2": lower = 0.333; upper =0.667

"*"from 2 to 4" nodes:
- "6.2": lower =0. 167; upper=0.333
- "2. 1": lower = 0.0; upper = 0. 5
- "6.4": lower = 0.5; upper = 0.667
- "3.3": lower = 0.667; upper = 1.0

' from 3 to 4" nodes:
- "7.5" lower = 0. 57 1; upper = 0.7 14
- "5. 1" lower = 0.0; upper = 0. 2

"-"4. 1" lower = 0.0; upper = 0. 25
"-"3. 1~ lower = 0.0; upper = 0.333
"-"5.4": lower = 0.6; upper = 0.8
"-"2. 1": lower = 0.0; upper = 0. 5
"-"6.5": lower = 0.667; upper = 0.833
"-"4.3": lower = 0.5; upper = 0.75
"-"2.2": lower = 0.5; upper = 1.0

The only nodes from these groups that get activated are the nodes which contain the ranges that
match the inputs:

"* "from 1 to 4" nodes:
- "2.2": lower = 0.5; upper = 1.0

"* "from 2 to 4" nodes:
- "6.2": lower = 0.167; upper = 0.333
- "2.1": lower = 0.0; upper = 0.5
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"from 3 to 4" nodes:
"- "4.1": lower = 0.0; upper = 0.25
"- "3.1": lower = 0.0; upper = 0.333
"- "2.1": lower = 0.0; upper = 0.5

Next, the activated nodes pass the original fractional values along with the normal coefficients

down to the second hidden layer:

* "from 1 to 4" nodes:
"2.2": fractional value: 0.79412

normal coefficient: 0.960

"* "from 2 to 4" nodes:
- "6.2": fractional value: 0.18576

normal coefficient: 0.390
- "2.1": fractional value: 0.18576

normal coefficient: 0.307

• "from 3 to 4" nodes:
"- "4.1": fractional value: 0.21277

normal coefficient: 0.422
"- "3.1": fractional value: 0.21277

normal coefficient: 0.400
"2.1": fractional value: 0.21277

normal coefficient: 0.270

Within each group, only the fractional value with the highest normal coefficient will be used. At

the second hidden layer, each remaining fiactional value is transformed into its original state

(0.79412 => 380; 0.18576 => 4; and 0.21277 => 15), and applied to its linear regression

equation:

• "14" node: "2.2":
linear regression line: -71.2925 + 0.20598x

* "24" node: "6.2":
linear regression line: -0.111996 + 0.319861x

0 "34" node: "4.1":
linear regression line: -3.11973 + 0.,173626x

The results of applying these parameters to their respective equations are listed below:

0 "14" node: "2.2":
-71.2925 + 0.20598(380) = 6.9799

• "24" node: "6.2":
-0.111996 + 0.319861(4) = 1.1674

* "34" node: "4.1":
-3.11973 + 0.173626(15) = -0.5153
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These values, along with their associated normal and correlation coefficients, are sent to the output

layer. Output node 4 (04) receives the following data:

"• "14" node: "2.2":
answer. 6.9799
n, rmal coefficient: 0.960
correlation coefficient: 0.960

* "24" node: "6.2":
answer: 1.1674
normal coefficient: 0.390
correlation coefficient: 0.390

• "34" node: "4.1":
answer: -0.5153
normal coefficient: 0.422
correlation coefficient: 0.889

At the output layer, the highest correlation coefficient indicates the answer. Thus, for this

example, given the values of temperature = 380'K, vibration = 4 kHz, and humidity = 15%, the

network determines the value for the number of failures to be 6.9799. This answer has associated

with it normal and correlation coefficients which equal 0.96. The closer these coefficients are to

1.0, the more likely the associated numerical answer is an accurate one.
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7.4 Summary

Statistics have been used in this application to help design a neural network whose

architecture is tailored to input data. Statistical methods, if used properly, are a very powerful way

to describe data. Neural networks, if used properly, can also be used to manipulate data and help

draw some conclusions about it. Since statistics can be used to describe data, and since neural

networks heavily involve statistics, it follows that neural network architectures and designs can
better be accomplished by using statistical methods and techniques as tools during the design

process. Data analysis can be performed more efficiently using network architectures and analysis

techniques which have been tailored using appropriate statistics.

Simple statistical descriptors for finding the location, dispersion and correlation of data
have been combined in the example presented here to form normal and correlation coefficients.
These coefficients, along with range harmonics and linear regression lines, have been used to

reformulate data into an integrated network called the Statistical Neural Network. The network
provides the ability to predict unknown parameters given known parameters. -T'he quality of the

results depends upon the quality of the data used to form the network, as well as the kinds of data

descriptors used in the network design. The Statistical Neural Network relies solely on statistical
techniques at this time and does not yet incorporate important concepts such as probability and

time. The most important contributions of this example are not necessarily the specific results
presented, but to show how statistics can be used to develop neural network architectures based on

data alone, and how appropriate data descriptors can be used to indicate and help determine natural

tendencies in data.
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8.0 Conclusion

This effort has addressed the feasibility of using neural network techniques in the

development of automated Reliability/Maintainabilityfrestability (RIM/T tools. The overall goal is
to use neural network technology to perform R/M/T tasks in a quicker, easier, more accurate
fashion. Work has included a feasibility study of neural network technology, ihivestigation of links
between neural networks and relialzility, research on data aspects and related data analysis issues,

and the development of a neural network whose architecture is based solely on statistics.

The feasibility portion of this effort focused on basic principles of neural networks and

reliability. Attempts were aimed at realizing the potential benefits resulting from the combination of

the two disciplines. Work involved gaining a comprehensive understanding of neural networks,

with emphasis on fundamental concepts. Another contribution has been the realization that

fundamental links exist between reliability and neural networks. These links are math-based,
which implies that various data analysis and computational methods may be shared amnong the two

disciplines. Common =rtas of mathematics have been ideaitified, beginning with probability and
statistics. The list expands to many other areas of math as well.

Research concernin~g the fundamental concepts of data has also been initiated here, with the
hope of gaining insight and the understanding needed to automate certain functions required of

intelligent information processing systems. While neural networks cannot provide the complete

solution, it appears that they will be part of the solution, along with their more conventional

counterparts. Fundamental issues concerning the nature of data can be modeled more naturally

using neural-like rather than conventional techniques. More work is needed to explore the theories

and concepts introduced here. The notion of automating such things as learning, communication,
and decision-making is admittedly difficult and unusual, but it is not without hope. We hope that
our contributions bring us closer to the goal.

We have also described the development of the Statistical Neural Network. This network

relies on the statistical nature of data to build its architecture. Basic statistical descriptors are used

to tune the network's architecture to input data, enabling more accurate analysis. This application
indicates that statistics can be a powerful tool for describing natural tendencies in data. This in turn

can lead to more efficient neural network designs and data analysis capabilities.

The results of this effort indicate that it would be very worthwhile to develop neural
network techniques with the goal of improving the overall effectiveness of reliability analysis.
With neural network technology gaining in popularity, the fundamental math-based similarities
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between neural networks and reliability imply that reliability science has much to gain in the long
run. Groundwork laid in this effort will enable us to better understand and apply neural network

techniques to R&M. The advantages of neural networks include the ability to learn or adapt, the

ability to generalize, and parallel architecture. Potential benefits in the areas of data analysis and
information processing include increased automated capabilities, improved analytical efficiency,

increased accuracy and adaptability. L imitations of neural networks stem mainly from the fact that

the technology's state of the art is relatively immature. Concepts are complex, abstract and

dynamic, making network architectures and learning methods difficult to design and applications

difficult to assess.

Recommendations for future work involve developing specific capabilities which exploit

the advantage~s of neural network technology as applied to RIM/T problems. This involves

developing automated tools and techniques for reliability analysis which handle data more naturally
and efficiently. Reliability is not an exact science - it's data are subject to much interpretation.

Neural network technology can provide techniques which are useful, effective, reliable and which

currently do not exist.
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9.0 Final Remarks

Neural networks are a computer technology which perform information processing in a

manner unlike that of traditional computers. Neural networks are programmed differently, have a

parallel rather than a serial nature, and are more tolerant to noisy or incomplete data. The potential

of neural networks has become a hot topic lately, with many researchers working old or new
problems using neural network techniques. However, given the flood of material on the subject, it
is difficult to determine what the essential issues are, and what impact they may have of interest to

the Air Force. Some people make wild claims about neural networks without sufficient evidence,

while others make specific claims without add~ressing the big picture. Some researchers are doing

excellent work. At this point in time, neural network technology is quite immature. Researchers

are applying neural networks to many kinds of problems, but the problems are typically small or

special purpose. Larger neural networks require extensive development, as do larger, more

conventional computer methods. No single, useful, general purpose neural network exists today,
at least in electronic form. Whatever form they exist in, neural networks should be apple~d
appropriately.

One thing to note about neural networks is that certain fundamn'ental laws or theories apply
to all physical systems, neural networks included. Many of the basic concepts used in the design

of neural networks already exist. Fundamental techniques are being combined in new ways to

extend or improve existing data analysis methods. The concepts of control theory, adaptive
systems, and statistical mechanics, to name a few, have provided some of the foundation for neural

networks. Mathematics, physics, computer science and electronic engineering are relevant to

neural networks as well as to reliability. Neural networks have been said to be a new name for old

techniques. This may be true in part, but neural networks still have something to add to the
technology base. The potential neural networks brings to reliability analysis, as well as to the

entire computer industry, is quite large. T'he realization of this potential will occur in due time.
The abstract nature of neural networks, as well as the complex mathen~iatical and physical
constraints which must be met for proper design, make the technology difficult to develop. Yet
neural networks are here now and must be evaluated. At the very least, neural\ networks have thus
far provided the means to combine the advantages of many technical disciplines under one roof.

Another important note is that much overlap exists in the fields of reliability and neural
networks. Not enough interest. has been paid on how neural networks may impact the field of
reliability. Fundamental similarities exist in the math-based data analysis of neural networks and
the mathematical models and methods used to perform reliability analysis. Reliability ultimately
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represents a measure of probability, and it involves using probabilistic and statistical methods to
characterize reliability parameters using the best available data. Neural networks are a data analysis

technique which inherently compile statistics and form probability distributions of incoming data

patterns. A natural development would be to combine the disciplines of neural networks and

reliability, resulting in automated R&.M tools and techniques which are useful, practical and more/

powerful than existing ones.

The advantages of neural networks exist in theory, and even in practice, albeit on a small

scale. We need to exploit the technology. But first we must develop it. The novelty of neural

netv~orks will diminish in time, but the underlying concepts will not go away. Concepts such as

learning, generalizing, and parallel processing will continue to be of engineering interest. In the

choice between performing a task manually or by computer, the automated method, will win if itK provides acceptable results. This is progress if the time and energy spent on the manual process is

redirected toward tasks which man does better than machine (such tasks will always exist). Neural

networks are a model used for processing and analyzing certain kinds of data. These models are

approximations to reality; as all models are. The question here becomes: are neural networks a

useful model? Can they improve on existing reliability analysis techniques? The answer is yes.
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